Syntactical Treatments of Interacting Modalities

交互方式的句法处理

基本信息

项目摘要

We aim at providing a systematic framework for interacting modalities. In contrast to the mainstream approach of modalities as operators we envisage treating them as predicates. Our approach takes up proposals by Carnap and Quine that agree better with some of our linguistic or philosophical intuitions. Furthermore, there is evidence that treating modalities as predicates is more general than the operator approach. Whereas single modalities treated as predicates have been investigated, there is no systematic account of multiple modalities treated jointly.The principal objective is to develop systems for interacting modalities treated as predicates. One of the main obstacles of providing such a framework is to avoid self-referential paradoxes as e.g.~the liar paradox or the paradox of the knower which threaten the predicate accounts. Inspired by theories of truth we wish to develop semantic approaches as well as axiomatic theories where all of these are formulated in a setting of several interacting modalities being formalized as predicates. The formal systems and tools will prove useful when applied to philosophical arguments employing several modalities, e.g.~we are confident to provide new insights in connection with the hotly debated Fitch paradox and therefore also for the realist/anti-realist debate.
我们的目标是为交互方式提供一个系统框架。与作为运算符的主流方法相反,我们设想将它们视为谓词。我们的方法采用了卡尔纳普和奎因的建议,这些建议更符合我们的一些语言或哲学直觉。此外,有证据表明将模态视为谓词比运算符方法更通用。尽管已经研究了被视为谓词的单一模态,但还没有对联合处理的多种模态进行系统说明。主要目标是开发被视为谓词的交互模态系统。提供这样一个框架的主要障碍之一是避免自我指涉悖论,例如威胁谓词账户的说谎者悖论或知者悖论。受真理理论的启发,我们希望开发语义方法和公理理论,其中所有这些都是在几种交互模式的设置中制定的,这些模式被形式化为谓词。当应用于采用多种模式的哲学论证时,形式系统和工具将被证明是有用的,例如,我们有信心提供与激烈争论的费奇悖论相关的新见解,因此也适用于现实主义/反现实主义辩论。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Type-Free Truth to Type-Free Probability
从无类型真理到无类型概率
  • DOI:
    10.1057/9781137003720_6
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hannes Leitgeb
  • 通讯作者:
    Hannes Leitgeb
MODALITY AND AXIOMATIC THEORIES OF TRUTH I: FRIEDMAN-SHEARD
真理的模态和公理理论 I:弗里德曼-谢尔德
  • DOI:
    10.1017/s1755020314000057
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Johannes Stern
  • 通讯作者:
    Johannes Stern
AXIOMATIZING SEMANTIC THEORIES OF TRUTH?
  • DOI:
    10.1017/s1755020314000379
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Fischer, Martin;Halbach, Volker;Stern, Johannes
  • 通讯作者:
    Stern, Johannes
Iterated reflection over full disquotational truth
对完全反引用事实的反复反思
  • DOI:
    10.1093/logcom/exx023
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Fischer ;Leon Horsten ;Carlo Nicolai
  • 通讯作者:
    Carlo Nicolai
Montague’s Theorem and Modal Logic
蒙塔古定理和模态逻辑
  • DOI:
    10.1007/s10670-013-9523-7
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Johannes Stern
  • 通讯作者:
    Johannes Stern
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Hannes Leitgeb其他文献

Professor Dr. Hannes Leitgeb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Hannes Leitgeb', 18)}}的其他基金

Formalism, Formalization, Intuition and Understanding in Mathematics: From Informal Practice to Formal Systems and Back Again
数学中的形式主义、形式化、直觉和理解:从非正式实践到正式系统再回来
  • 批准号:
    390218268
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mathematics: Objectivity by representation
数学:通过表征实现客观性
  • 批准号:
    246591146
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
  • 批准号:
    2608661
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Studentship
Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Developing new tests and treatments to enable prevention of osteoarthritis.
开发新的测试和治疗方法以预防骨关节炎。
  • 批准号:
    MR/Y003470/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
Uncovering the epigenetic face of lung fibrosis for discovery of novel biomarkers and treatments.
揭示肺纤维化的表观遗传面,以发现新的生物标志物和治疗方法。
  • 批准号:
    MR/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Identifying mechanisms and novel treatments of bone pain - closing the gap to the clinic. BonePainIII
确定骨痛的机制和新疗法——缩小与临床的差距。
  • 批准号:
    EP/Y036956/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Virtual Mouse and Human Twins for optimising Treatments for Osteoporosis
虚拟小鼠和人类双胞胎用于优化骨质疏松症的治疗
  • 批准号:
    EP/Z000203/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Next Generation Glioma Treatments using Direct Light Therapy (GlioLighT)
使用直接光疗法 (GlioLighT) 的下一代神经胶质瘤治疗
  • 批准号:
    10110169
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Establishment of new treatments for Age-Related Salivary Secretion Disorders
建立年龄相关唾液分泌障碍的新疗法
  • 批准号:
    23K10913
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了