Workshop on Geometric Group Theory
几何群论研讨会
基本信息
- 批准号:1004774
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports US invited speakers and US junior researchers attending the "Workshop on Geometric Group Theory", to be held August 9-14, 2010 at Goa University in India. This will be a satellite conference of the International Congress of Mathematicians (ICM). The workshop will feature a variety of topics which exemplify the central theme of the field, that of approaching group theoretic questions by treating groups as geometric objects. There will be mini-courses on lattices in Lie groups, CAT(0) groups and Out(Fn), which will be aimed at graduate students and researchers new to the field. In addition, there will be about 17 invited research talks in these as well as closely related areas, such as mapping class groups, limit groups, relatively hyperbolic groups and quasi-isometric rigidity.Geometric group theory is a relatively new field which has been flourishing in recent years. Questions and techniques in geometric group theory come from a startling range of sources: combinatorial group theory, three-manifolds, Riemannian geometry, logic, and algebraic geometry are just a few examples. The interdisciplinary aspect of the field has given rise to a rich theory. This workshop will create a stimulating forum for generating new ideas, by bringing together a variety of participants: leading specialists, junior researchers, and researchers from fields that are related, but not traditionally a part of geometric group theory. This is expected to be mutually beneficial: the sharing of techniques, tools and ideas from different backgrounds is likely to lead to interesting new avenues of research. Further, it will have a positive impact on international collaborations. The workshop will also seek to attract good mathematicians to geometric group theory by providing a well-rounded picture of the current state of research in the field. This will be done through mini-courses which focus on key examples and motivating ideas, and through invited research talks. There will also be short contributed talks, which will provide a platform for young mathematicians to present their research.
该奖项支持美国特邀演讲者和美国初级研究人员参加“几何群论研讨会”,将于2010年8月9日至14日在印度果阿大学举行。 这将是国际数学家大会(ICM)的卫星会议。该研讨会将以各种主题为特色,这些主题围绕着该领域的中心主题,即通过将群体视为几何对象来处理群体理论问题。将有关于李群,CAT(0)群和Out(Fn)中的晶格的迷你课程,这些课程将针对研究生和新领域的研究人员。此外,大会亦会邀请约17个研究讲座,内容包括映射类群、极限群、相对双曲群及拟等距刚性等。几何群论是近年来蓬勃发展的一个较新领域。 几何群论中的问题和技巧来自一个惊人的来源范围:组合群论,三流形,黎曼几何,逻辑和代数几何只是几个例子。该领域的跨学科方面产生了丰富的理论。本次研讨会将创建一个激励论坛,产生新的想法,汇集了各种参与者:领先的专家,初级研究人员,以及来自相关领域的研究人员,但传统上不是几何群论的一部分。 预计这将是互惠互利的:来自不同背景的技术、工具和想法的分享可能会导致有趣的新研究途径。此外,它将对国际合作产生积极影响。 讲习班还将寻求吸引良好的数学家几何群论提供了一个全面的图片目前的研究状况在该领域。这将通过小型课程,重点是关键的例子和激励的想法,并通过邀请研究会谈。也将有简短的贡献会谈,这将为年轻的数学家提供一个平台,介绍他们的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pallavi Dani其他文献
Bowditch's JSJ tree and the quasi‐isometry classification of certain Coxeter groups
Bowditch 的 JSJ 树和某些 Coxeter 群的拟等距分类
- DOI:
10.1112/topo.12033 - 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
Pallavi Dani;Anne Thomas - 通讯作者:
Anne Thomas
The asymptotic density of finite-order elements in virtually nilpotent groups
- DOI:
10.1016/j.jalgebra.2007.06.023 - 发表时间:
2006-01 - 期刊:
- 影响因子:0.9
- 作者:
Pallavi Dani - 通讯作者:
Pallavi Dani
Morse theory and conjugacy classes of finite subgroups
- DOI:
10.1007/s10711-008-9257-x - 发表时间:
2008-04-23 - 期刊:
- 影响因子:0.500
- 作者:
Noel Brady;Matt Clay;Pallavi Dani - 通讯作者:
Pallavi Dani
Super-exponential distortion of subgroups of CAT(−1) groups
CAT(−1)群子群的超指数畸变
- DOI:
10.2140/agt.2007.7.301 - 发表时间:
2007 - 期刊:
- 影响因子:0.7
- 作者:
Josh Barnard;N. Brady;Pallavi Dani - 通讯作者:
Pallavi Dani
Fractional distortion in hyperbolic groups
双曲群中的分数失真
- DOI:
10.1016/j.aim.2025.110418 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:1.500
- 作者:
Pallavi Dani;Timothy Riley - 通讯作者:
Timothy Riley
Pallavi Dani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pallavi Dani', 18)}}的其他基金
Conference Proposal:Summer School on Aspects of Geometric Group Theory
会议提案:几何群理论方面的暑期学校
- 批准号:
1928652 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
The geometry of non-positively curved groups
非正曲群的几何形状
- 批准号:
1812061 - 财政年份:2018
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Young Geometric Group Theory XII
会议:年轻几何群理论XII
- 批准号:
2404322 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Riverside Workshop on Geometric Group Theory 2024
会议:2024 年河滨几何群论研讨会
- 批准号:
2342119 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Thematic Program in Geometric Group Theory
会议:几何群论专题课程
- 批准号:
2240567 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Riverside Geometric Group Theory Workshop 2023
会议:Riverside几何群理论研讨会2023
- 批准号:
2234299 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
- 批准号:
2311110 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant