Ergodic Theory of Decisions Under Partial Information
部分信息下的决策遍历理论
基本信息
- 批准号:1005575
- 负责人:
- 金额:$ 14.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with sequential decision problems under partial information. In such problems, decisions must be made sequentially in time. The decision maker has access to an observed component of an ergodic Markov process, but the cost of her decisions is determined also by the unobserved part of the process. The decision maker aims to minimize the long time average cost by the choice of a strategy that is adapted to the filtration generated by the observations only. The goal of the project is to characterize the fundamental properties of optimal decisions, such as pathwise optimality and ergodic theorems, and to investigate certain sub-optimal decision algorithms which can be efficiently implemented in practice. The research will build on and extend recent advances in the ergodic theory of nonlinear filters.Partially observed stochastic systems are ubiquitous in a wide range of disciplines including signal processing, communications, navigation and tracking, robotics, data assimilation and forecasting, bioinformatics, physics, economics and finance. In such problems, one is faced with two major difficulties: uncertainty in the dynamics of the system of interest, and the limited availability of information. This project aims to understand how one can best make decisions in an uncertain environment when only partial information is available. The development of a mathematical theory characterizing the properties of optimal decisions can help elucidate the fundamental limitations one faces in making decisions with limited information, as well as lead to practical algorithms for making near-optimal decisions which can be used in applications.
本课题研究部分信息条件下的顺序决策问题。在这类问题中,决策必须按顺序及时做出。决策者可以访问遍历马尔可夫过程的可观察部分,但其决策的成本也由该过程的不可观察部分决定。决策者的目标是通过选择一种策略来最小化长时间的平均成本,这种策略只适应由观察产生的过滤。该项目的目标是描述最优决策的基本性质,如路径最优性和遍历定理,并研究某些可在实践中有效实现的次最优决策算法。该研究将建立并扩展非线性滤波器遍历理论的最新进展。部分观察随机系统在广泛的学科中无处不在,包括信号处理、通信、导航和跟踪、机器人、数据同化和预测、生物信息学、物理学、经济学和金融学。在这些问题中,人们面临着两个主要困难:利益系统动态的不确定性和信息的有限可用性。这个项目旨在了解当只有部分信息可用时,人们如何在不确定的环境中最好地做出决策。描述最优决策特性的数学理论的发展可以帮助阐明人们在有限信息下做出决策时面临的基本限制,并导致可以在应用中使用的近似最优决策的实用算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramon Van Handel其他文献
Ramon Van Handel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramon Van Handel', 18)}}的其他基金
Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
- 批准号:
2054565 - 财政年份:2021
- 资助金额:
$ 14.56万 - 项目类别:
Standard Grant
Geometry of Nonhomogeneous Random Matrices, Vectors, and Processes
非齐次随机矩阵、向量和过程的几何
- 批准号:
1811735 - 财政年份:2018
- 资助金额:
$ 14.56万 - 项目类别:
Continuing Grant
CAREER: Conditional Theory of Large-Scale Stochastic Systems
职业:大规模随机系统的条件理论
- 批准号:
1148711 - 财政年份:2012
- 资助金额:
$ 14.56万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2022
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2021
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2020
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2019
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
Model Predictive Control with Discrete/Continuous Decisions: Theory, Computation, and Application
具有离散/连续决策的模型预测控制:理论、计算和应用
- 批准号:
1854007 - 财政年份:2018
- 资助金额:
$ 14.56万 - 项目类别:
Standard Grant
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2018
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
Supporting Saskatchewan's Indigenous peoples in making optimal patient-centred health decisions: the development and assessment of realist program theory
支持萨斯喀彻温省原住民做出以患者为中心的最佳健康决策:现实主义计划理论的发展和评估
- 批准号:
368479 - 财政年份:2017
- 资助金额:
$ 14.56万 - 项目类别:
Theory and Applications of Three-Way Decisions in Intelligent Information Systems
智能信息系统三支决策理论与应用
- 批准号:
RGPIN-2017-06507 - 财政年份:2017
- 资助金额:
$ 14.56万 - 项目类别:
Discovery Grants Program - Individual
A Research on Behavioral Strategies of Judicial Decisions on Abortion Cases in the United States: History and Theory
美国堕胎案件司法判决行为策略研究:历史与理论
- 批准号:
17K03355 - 财政年份:2017
- 资助金额:
$ 14.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Predictive Control with Discrete/Continuous Decisions: Theory, Computation, and Application
具有离散/连续决策的模型预测控制:理论、计算和应用
- 批准号:
1603768 - 财政年份:2016
- 资助金额:
$ 14.56万 - 项目类别:
Standard Grant