Geometry of Nonhomogeneous Random Matrices, Vectors, and Processes

非齐次随机矩阵、向量和过程的几何

基本信息

  • 批准号:
    1811735
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

High-dimensional random structures arise throughout mathematics and its applications. Many classical problems of probability theory are devoted to understanding the patterns that are generated by random noise in high-dimensional systems. For example, suppose one has a large matrix each of whose entries is the outcome of an independent fair coin flip, i.e., the matrix is filled with noise. What do the eigenvalues of such a matrix look like? Such questions have beautiful answers that are now well understood. There are however many situations, both in pure and in applied mathematics, in which there is nontrivial structure underneath the noise. For example, in the random matrix problem, we could allow each entry to have an arbitrary variance that reflects the intensity of the corresponding variable. The challenge in such problems, which are much less well understood than their classical counterparts, is to capture the interplay between the structure and the noise. The aim of this project is to develop mathematical techniques that make it possible to address such questions in considerable generality. Beside their fundamental interest, such techniques are expected to be applicable to areas such as statistics and computer science where high-dimensional random structures play an important role. Several education and outreach activities further form a key part of this project.The overarching goal of this project is to develop new mechanisms and techniques in high-dimensional probability to address problems that could be broadly characterized as having nonhomogeneous structure. The fundamental question in such problems is: how is the underlying geometric structure reflected in the probabilistic behavior of the model? Such questions are of significant importance in various pure and applied mathematical problems. This project aims to systematically investigate such problems that arise in three interrelated themes: (i) the norms of nonhomogeneous random matrices (for example, with arbitrary variance or sparsity pattern); (ii) the geometry of nonhomogeneous random processes (such as those that arise, for example, in random matrix theory or in functional analysis); (iii) geometric inequalities and dimension-free phenomena (for example, in connection with measure concentration or convexity). The project will leverage recent advances on these topics to push forward the state-of-the-art in this area of probability and its applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高维随机结构出现在整个数学及其应用。概率论的许多经典问题致力于理解高维系统中随机噪声产生的模式。例如,假设有一个大矩阵,其每个条目都是独立的公平硬币投掷的结果,即,矩阵中充满了噪声。这样一个矩阵的特征值是什么样的?这些问题都有美丽的答案,现在已经很好地理解了。然而,在许多情况下,无论是在纯数学还是应用数学中,在噪声之下都存在着非平凡的结构。例如,在随机矩阵问题中,我们可以允许每个条目具有反映相应变量强度的任意方差。这些问题的挑战是捕捉结构和噪声之间的相互作用,这些问题比经典问题更难理解。该项目的目的是开发数学技术,使之有可能在相当大的一般性,以解决这些问题。除了他们的基本利益,这些技术预计将适用于统计和计算机科学等领域的高维随机结构发挥着重要作用。几个教育和推广活动进一步形成了这个项目的一个重要组成部分。这个项目的总体目标是在高维概率中开发新的机制和技术,以解决可以广泛地描述为具有非均匀结构的问题。这些问题的基本问题是:如何反映在模型的概率行为的基本几何结构?这类问题在各种纯数学问题和应用数学问题中具有重要意义。本计画旨在系统地探讨三个相关主题中的问题:(i)非齐次随机矩阵的范数(例如,具有任意方差或稀疏模式);(ii)非齐次随机过程的几何(例如在随机矩阵理论或泛函分析中出现的那些);(iii)几何不等式和无量纲现象(例如,与测度集中或凸性有关)。该项目将利用这些主题的最新进展,推动概率及其应用领域的最新技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A theory of universal learning
Mixed volumes and the Bochner method
混合体积和博赫纳方法
Stability of the logarithmic Sobolev inequality via the Föllmer process
通过 Föllmer 过程的对数 Sobolev 不等式的稳定性
  • DOI:
    10.1214/19-aihp1038
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eldan, Ronen;Lehec, Joseph;Shenfeld, Yair
  • 通讯作者:
    Shenfeld, Yair
Graph Powering and Spectral Robustness
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramon Van Handel其他文献

Ramon Van Handel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramon Van Handel', 18)}}的其他基金

Unusual Concentration Phenomena in Probability, Analysis, and Geometry
概率、分析和几何中的异常集中现象
  • 批准号:
    2054565
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Conditional Theory of Large-Scale Stochastic Systems
职业:大规模随机系统的条件理论
  • 批准号:
    1148711
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Ergodic Theory of Decisions Under Partial Information
部分信息下的决策遍历理论
  • 批准号:
    1005575
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Adaptive Robust Control of Stress Oscillations in Nonhomogeneous Plates Composed of Functional Materials
功能材料非均匀板应力振荡的自适应鲁棒控制
  • 批准号:
    19K04076
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Texture Synthesis Based on Nonhomogeneous Recursive Subdivision
基于非齐次递归细分的纹理合成
  • 批准号:
    495299-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
A fundamental study on the nonhomogeneous and anisotropic hygrothermoelasticitiy assuring the design procedures of wooden products
非均匀各向异性湿热弹性的基础研究确保木制品的设计程序
  • 批准号:
    24560108
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonhomogeneous Markov decision processes in medical decision making
医疗决策中的非齐次马尔可夫决策过程
  • 批准号:
    341415-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Nonhomogeneous Markov decision processes in medical decision making
医疗决策中的非齐次马尔可夫决策过程
  • 批准号:
    341415-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Nonhomogeneous Markov decision processes in medical decision making
医疗决策中的非齐次马尔可夫决策过程
  • 批准号:
    341415-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Nonhomogeneous Markov decision processes in medical decision making
医疗决策中的非齐次马尔可夫决策过程
  • 批准号:
    341415-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Multifaceted exploration of nonhomogeneous and ambiguous data by combining partial similarities
通过结合部分相似性对非同质和模糊数据进行多方面探索
  • 批准号:
    20700134
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Reliability Inference and Degradation Modeling based on a Class of Nonhomogeneous Levy Processes
基于一类非齐次Levy过程的可靠性推断与退化建模
  • 批准号:
    0805031
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Nonhomogeneous Markov decision processes in medical decision making
医疗决策中的非齐次马尔可夫决策过程
  • 批准号:
    341415-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了