Time-Dependent Density-Functional Approaches for Exciton Dynamics
激子动力学的瞬态密度泛函方法
基本信息
- 批准号:1005651
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports theoretical and computational research and education to study optical excitation processes in extended systems, with a particular emphasis on excitonic effects in bulk semiconductors and organic chains. The PI will use time-dependent density-functional theory. Exchange-correlation functionals with a long spatial range are required to capture excitonic effects, and only a few of these are available. The primary goal is to develop and test exchange-correlation functionals which produce excitonic binding in the frequency-dependent linear-response domain and in the nonlinear real-time domain.The PI will use time-dependent density-functional theory in the linear-response domain to calculate excitonic binding energies in bulk semiconductors and insulators. A two-band model, demonstrated to produce excitonic binding for various simple exchange-correlation kernels, will be extended to include additional bands. Various long-range exchange-correlation kernels will be implemented and tested, and singlet-triplet exciton splittings will be calculated using a spin-dependent formalism.The PI will apply real-time time-dependent density-functional theory to simulate short-time exciton dynamics in organic chain molecules. The exchange-correlation functionals required for excitonic binding will be carried over from the frequency-dependent linear-response regime into the real-time domain. A new computational tool to visualize exciton dynamics, the time-dependent transition density matrix, will be developed. Real-time simulations will be carried out for simple polymer chains to study how localized excitations spread out along the chains and connect to neighboring units.An accurate time-dependent density-functional theory description of excitons will be relevant and applicable for a wide range of materials, from bulk inorganic semiconductors to polymers and organic heterojunctions. The latter systems will be explored in real-time calculations, to test the time-dependent transition density matrix. Developing these methodologies may have impact on organic optoelectronics and photovoltaics.An undergraduate condensed-matter physics course developed under prior NSF support will be broadened in scope so as to address a wider audience. A new graduate course in theoretical materials science will be developed with the goal to introduce students to a variety of topics in materials theory and simulation, including hands-on computational exercises.NON-TECHNICAL SUMMARYThis award supports theoretical and computational research and education to develop new theoretical and computational methods to describe the optical properties of materials, specifically semiconductors with particular emphasis on semiconductor materials made of long chain-like molecules called polymers. An accurate and computationally efficient approach to simulate the optical properties of these materials will provide important assistance for understanding and designing novel solar cell and optoelectronic devices.The PI will further develop and use a computationally efficient method to describe the fundamental processes that take place during the interaction of semiconductor materials with light. The method known as time-dependent density functional theory has successfully described the response of electrons in molecules to time varying electric fields. This theory will be used to simulate and visualize in real time the basic steps involving the interaction of the electrons in polymer semiconductors with light. An undergraduate condensed-matter physics course developed under prior NSF support will be broadened in scope so as to address a wider audience. A new graduate course in theoretical materials science will be developed with the goal to introduce students to a variety of topics in materials theory and simulation, including hands-on computational exercises.
技术总结该奖项支持理论和计算研究和教育,以研究扩展系统中的光学激发过程,特别强调块状半导体和有机链中的激子效应。PI将使用含时密度泛函理论。要捕捉激子效应,需要具有大空间范围的交换关联泛函,而这些泛函中只有几个是可用的。主要目标是开发和测试在频率相关的线性响应域和非线性实时域中产生激子结合的交换关联泛函。PI将在线性响应域中使用含时密度泛函理论来计算块状半导体和绝缘体中的激子结合能。两带模型将被扩展到包括额外的带,该模型被证明对各种简单的交换相关核产生激子结合。将实现和测试各种长程交换相关核,并将使用自旋相关形式计算单重态-三重态激子分裂。PI将应用实时含时密度泛函理论模拟有机链分子中的短时激子动力学。激子结合所需的交换关联泛函将从频率依赖的线性响应机制带入实时域。我们将开发一种新的可视化激子动力学的计算工具--含时跃迁密度矩阵。对于简单的高分子链,将进行实时模拟,以研究局域激发如何沿着链扩散并连接到相邻单元。激子的精确含时密度泛函理论描述将适用于广泛的材料,从块状无机半导体到聚合物和有机异质结。后一种系统将在实时计算中进行探索,以检验随时间变化的跃迁密度矩阵。开发这些方法可能会对有机光电子学和光伏产生影响。在以前NSF的支持下开发的一门本科生凝聚态物理课程将扩大范围,以满足更广泛的受众。将开发一门新的理论材料科学研究生课程,目的是向学生介绍材料理论和模拟的各种主题,包括动手计算练习。该奖项支持理论和计算研究和教育,以开发新的理论和计算方法来描述材料的光学性质,特别是半导体,特别是由长链状分子组成的半导体材料,称为聚合物。准确而高效地模拟这些材料的光学性质将为理解和设计新型的太阳能电池和光电子器件提供重要的帮助,PI将进一步发展和使用一种计算高效的方法来描述半导体材料与光相互作用的基本过程。这种被称为含时密度泛函理论的方法成功地描述了分子中电子对时变电场的响应。这一理论将被用来实时模拟和可视化涉及聚合物半导体中电子与光相互作用的基本步骤。在以前NSF的支持下开发的一门本科生凝聚态物理课程将扩大范围,以满足更广泛的受众。将开发一门新的理论材料科学研究生课程,目的是向学生介绍材料理论和模拟的各种主题,包括动手计算练习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carsten Ullrich其他文献
Resisting free-riding behavior in BitTorrent
抵制 BitTorrent 中的搭便车行为
- DOI:
10.1016/j.future.2009.05.014 - 发表时间:
2010-10 - 期刊:
- 影响因子:0
- 作者:
Heng Luo;Jian Wang;Carsten Ullrich;Ruimin Shen;Changyong Niu - 通讯作者:
Changyong Niu
Learning Class-relevant Features and Class-irrelevant Features via a Hybrid third-order RBM
通过混合三阶 RBM 学习类别相关特征和类别无关特征
- DOI:
- 发表时间:
2011-06 - 期刊:
- 影响因子:6
- 作者:
Carsten Ullrich;Heng Luo;Chongyong Niu;Ruimin Shen - 通讯作者:
Ruimin Shen
Course Generation as a Hierarchical Task Network Planning Problem
作为分层任务网络规划问题的课程生成
- DOI:
10.22028/d291-25910 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Carsten Ullrich - 通讯作者:
Carsten Ullrich
Carsten Ullrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carsten Ullrich', 18)}}的其他基金
Conference: Third US School and Workshop on Theory and Applications of TDDFT
会议:第三届美国 TDDFT 理论与应用学校及研讨会
- 批准号:
2318197 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Time-dependent Density-Functional Approaches for Excitons: Linear Response Versus Real Time
激子的瞬态密度泛函方法:线性响应与实时响应
- 批准号:
1810922 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Excitons with time-dependent density-functional theory
激子与时间相关的密度泛函理论
- 批准号:
1408904 - 财政年份:2014
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
2007 Time-Dependent Density-Functional Theory: GRC, Summer 2007, Colby College, Maine
2007 瞬态密度泛函理论:GRC,2007 年夏季,科尔比学院,缅因州
- 批准号:
0715403 - 财政年份:2007
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
CAREER: Time-Dependent Density-Functional Approach for Ultrafast Nonlinear Excitations in Semiconductors
职业:半导体中超快非线性激励的瞬态密度泛函方法
- 批准号:
0448763 - 财政年份:2005
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
CAREER: Time-Dependent Density-Functional Approach for Ultrafast Nonlinear Excitations in Semiconductors
职业:半导体中超快非线性激励的瞬态密度泛函方法
- 批准号:
0553485 - 财政年份:2005
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
当归芍药散基于双向调控Ras/cAMP-dependent PKA自噬通路的“酸甘化阴、辛甘化阳”的药性基础
- 批准号:81973497
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
蒺藜苜蓿细胞周期蛋白依赖性激酶(cyclin-dependent kinase)对根瘤发育的功能研究
- 批准号:31100871
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
Posphoinositide-dependent kinase-1在肿瘤细胞趋化运动和转移中的作用机制
- 批准号:30772529
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Using Computational Time-Dependent Ginzburg-Landau Theory to calculate & visualise the current density of high-field superconductors in fusion tokamak
使用计算瞬态Ginzburg-Landau理论进行计算
- 批准号:
2910484 - 财政年份:2023
- 资助金额:
$ 28.5万 - 项目类别:
Studentship
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
RUI: Exciton-Phonon Interactions in Solids based on Time-Dependent Density Functional Perturbation Theory
RUI:基于瞬态密度泛函微扰理论的固体中激子-声子相互作用
- 批准号:
2105918 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Molecules in Classical and Quantized Fields: Developing Time-dependent Density Functional and Exact Factorization Methods for Electrons, Ions, and Photons
经典和量子化领域中的分子:开发电子、离子和光子的时间相关密度泛函和精确分解方法
- 批准号:
2154829 - 财政年份:2022
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Conical intersections within linear-response time-dependent density functional theory
线性响应时间相关密度泛函理论中的圆锥相交
- 批准号:
2571940 - 财政年份:2021
- 资助金额:
$ 28.5万 - 项目类别:
Studentship
Developing isolated single metal ion coordinated by carbon nitrides for photocatalytic H2O2 production based on Time-Dependent Density Function Theory
基于瞬态密度函数理论开发氮化碳配位的孤立单金属离子用于光催化 H2O2 生产
- 批准号:
20J13064 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
1954348 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Calculating the Excited States of Large Systems Using Time Dependent Density Functional Theory
使用瞬态密度泛函理论计算大型系统的激发态
- 批准号:
519604-2018 - 财政年份:2020
- 资助金额:
$ 28.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral