Nonequilibrium Materials Synthesis: Understanding and Controlling the Formation of Hierarchically Structured Microtubes
非平衡材料合成:理解和控制分层结构微管的形成
基本信息
- 批准号:1005861
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis project focuses on inorganic, tubular materials formed during spatially controlled reaction processes. These hollow tubes have inner radii 1-100 µm and result from the precipitation of amorphous silica and metal hydroxides. The overall phenomenon is not well understood and its potential as a model case for system-level materials science widely unexplored. Under this grant, supported by the Solid State and Materials Chemistry program of the Division of Materials Research, the PI will develop a pressure-controlled reactor system to produce millimeter-long microtubes with radii of down to 1 µm. In addition, the size and shape of these microtubes will be controlled using variable electric fields and pressure changes. Another central goal is to nano-engineer the physico-chemical characteristics of the tube wall by binding, trapping and adsorbing a variety of molecules and particles. Moreover, the group will integrate tubes into microfluidic devices where they will add functionalities such as enhanced separation regions, chemical sensors, and catalytic processing stations. These experimental projects will be complemented by modeling efforts that aim to develop a reaction-transport model capable of capturing key aspects of the large-scale growth dynamics based on the precipitation kinetics, diffusion, and advection processes. An important part of the broader impact of this project is to communicate its key ideas and results to non-experts. The project will pursue this goal through a multi-faceted video outreach program. In addition, it will advance the education of undergraduate, graduate and postdoctoral students at the Florida State University.NON-TECHNICAL SUMMARYModern technologies produce materials and devices in ways that differ fundamentally from the strategies employed by biological systems. These differences are the likely explanation as to why materials with hierarchical architectures and self-healing features tend to elute conventional engineering approaches but are abundant in biology. A key question in this context is how chemical reactions can cause the formation of complex structures that are thousands to millions times larger than the individual molecules. The project will tackle this big question by studying inorganic reactions that are known to produce hollow tubes. The diameter and length of these rigid structures is comparable to human hair but can also be significantly thinner. The tube walls typically consist of amorphous silica (porous glass) and metal hydroxides or oxides, which create interesting catalytic and optical properties. If successful, this research will (i) result in quantitative models of nano-to-macro growth processes, (ii) provide reactor systems that can shape the tubes during growth, (iii) demonstrate chemical modifications of the wall material that introduce chemical sensing and/or processing capabilities, (iv) explore applications towards uses in microfluidic and lab-on-a-chip technologies. The project also aims to communicate its scientific ideas and results to non-experts. The intriguing life-like appearance and overall visual appeal of the basic phenomenon will greatly assist in this effort. Specific plans include targeted video outreach through FSU's Global Educational Outreach Program, Podcasts, and popular websites such as YouTube. In addition, the project will advance the education of several undergraduate, graduate and postdoctoral students. The PI will also continue his commitment to involve underrepresented groups and participate in programs that aim to increase their leadership roles in research and academia.
技术概述本项目的重点是在空间控制反应过程中形成的无机管状材料。 这些空心管的内径为1-100 µm,由无定形二氧化硅和金属氢氧化物沉淀而成。 整体现象还没有得到很好的理解,其作为系统级材料科学的模型案例的潜力还没有得到广泛的探索。 在材料研究部门的固态和材料化学计划的支持下,PI将开发一种压力控制反应器系统,以生产半径低至1微米的毫米长微管。 此外,这些微管的尺寸和形状将通过可变电场和压力变化来控制。 另一个中心目标是通过结合、捕获和吸附各种分子和颗粒来纳米工程化管壁的物理化学特性。 此外,该小组将把管集成到微流体设备中,在那里他们将增加功能,如增强的分离区域,化学传感器和催化处理站。 这些实验项目将通过建模工作来补充,这些建模工作旨在开发一个反应-传输模型,该模型能够根据沉淀动力学、扩散和平流过程来捕获大规模增长动力学的关键方面。 该项目产生更广泛影响的一个重要部分是向非专家传达其关键想法和结果。 该项目将通过一个多方面的视频宣传方案来实现这一目标。 此外,它还将促进佛罗里达州立大学本科生、研究生和博士后学生的教育。非技术总结现代技术生产材料和设备的方式与生物系统采用的策略有根本不同。 这些差异可能解释了为什么具有层次结构和自我修复功能的材料往往会破坏传统的工程方法,但在生物学中却很丰富。 在这种情况下,一个关键问题是化学反应如何导致形成比单个分子大数千到数百万倍的复杂结构。 该项目将通过研究已知会产生中空管的无机反应来解决这个大问题。 这些刚性结构的直径和长度与人类头发相当,但也可以明显更薄。 管壁通常由无定形二氧化硅(多孔玻璃)和金属氢氧化物或氧化物组成,它们产生有趣的催化和光学特性。 如果成功,这项研究将(i)导致纳米到宏观生长过程的定量模型,(ii)提供可以在生长过程中塑造管的反应器系统,(iii)展示引入化学传感和/或处理能力的壁材料的化学修饰,(iv)探索微流体和芯片实验室技术的应用。 该项目还旨在向非专家传达其科学思想和成果。 有趣的生活般的外观和整体视觉吸引力的基本现象将大大有助于这一努力。 具体计划包括通过前苏联的全球教育推广计划,播客和流行的网站,如YouTube有针对性的视频推广。 此外,该项目还将促进一些本科生、研究生和博士后的教育。 PI还将继续致力于让代表性不足的群体参与进来,并参与旨在增强他们在研究和学术界领导作用的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Steinbock其他文献
High-throughput robotic collection, imaging, and machine learning analysis of salt patterns: composition and concentration from dried droplet photos
盐模式的高通量机器人采集、成像和机器学习分析:从干燥液滴照片中获取成分和浓度
- DOI:
10.1039/d4dd00333k - 发表时间:
2025-01-31 - 期刊:
- 影响因子:5.600
- 作者:
Bruno C. Batista;Amrutha S. V.;Jie Yan;Beni B. Dangi;Oliver Steinbock - 通讯作者:
Oliver Steinbock
Die Natur schlägt Wellen
自然现象韦伦
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
F. Siegert;Oliver Steinbock - 通讯作者:
Oliver Steinbock
Komplexe Formen und Dynamik von Dichlormethan‐Tropfen
二氯甲烷-托芬复合材料
- DOI:
10.1002/ange.201104261 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Véronique Pimienta;Michèle Brost;Nina Kovalchuk;Stefan Bresch;Oliver Steinbock - 通讯作者:
Oliver Steinbock
Spatial Attractors in Aggregation Patterns of Dictyostelium discoideum
盘基网柄菌聚集模式中的空间吸引子
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Oliver Steinbock;S. Müller - 通讯作者:
S. Müller
Carbonbeton – Eine neue Verstärkungsmethode für Massivbrücken
Carbonbeton – Massivbrücken 的新 Verstärkungsmethode
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.1
- 作者:
Oliver Steinbock;E. Pelke;Oliver Ost - 通讯作者:
Oliver Ost
Oliver Steinbock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Steinbock', 18)}}的其他基金
Emerging Complexity and Hierarchical Order in Precipitation Reactions
沉淀反应中出现的复杂性和层次顺序
- 批准号:
1609495 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Vortex Dynamics and Suppression of Chemical Turbulence in Autocatalytic Reaction-Diffusion Systems
自催化反应扩散系统中的涡动力学和化学湍流抑制
- 批准号:
1565734 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Scroll Wave Dynamics in Heterogeneous Reaction-Diffusion Systems
非均相反应扩散系统中的涡旋波动力学
- 批准号:
1213259 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Filament Dynamics in Three-Dimensional Reaction-Diffusion Systems
三维反应扩散系统中的细丝动力学
- 批准号:
0910657 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Filament Dynamics in Three-Dimensional Reaction-Diffusion Systems
三维反应扩散系统中的细丝动力学
- 批准号:
0513912 - 财政年份:2005
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Pattern Formation in Homogeneous and Micro-Structured Chemical Systems
均质和微结构化学系统中的图案形成
- 批准号:
0211264 - 财政年份:2002
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
- 批准号:
2337740 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Conference: 2024 Rice Workshop on Quantum Materials Synthesis
会议:2024莱斯量子材料合成研讨会
- 批准号:
2420148 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Plasma Jet Synthesis and Deposition of Metal Oxide Materials
金属氧化物材料的等离子射流合成与沉积
- 批准号:
2901960 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Targeted Synthesis of Biomass-derived Carbon Materials (TSBCM): structural evolution mechanisms, regulating strategies, and application demonstration
生物质碳材料的靶向合成(TSBCM):结构演化机制、调控策略和应用示范
- 批准号:
EP/Z000742/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
Advanced Materials from Automated Synthesis of Sequence-Defined Polymers
序列定义聚合物自动合成的先进材料
- 批准号:
DP230101739 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Projects
Synthesis of multisubstituted stannoles bearing different substituents and its application to electrochromic materials
不同取代基多取代锡烷的合成及其在电致变色材料中的应用
- 批准号:
23K04748 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Realization of Ultralight and High Strength Materials by Fine Synthesis of Three-Dimensional Polymer Network
三维聚合物网络精细合成实现超轻高强材料
- 批准号:
23H02016 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




