GOALI: Nanoscale Characterization and Manipulation of Magnetoelastic Coupling and Magnetic Domains by Novel Quantitative Scanning Probe Microscopy
GOALI:通过新型定量扫描探针显微镜对磁弹性耦合和磁域进行纳米级表征和操纵
基本信息
- 批准号:1006194
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY: The objective of this project is to understand the dramatically enhanced magnetostriction in Galfenol, or Fe-Ga alloy, which exhibits magnetostrictive strain one order of magnitude higher than that of alpha-Fe, even though Ga is nonmagnetic. Novel piezomagnetic force microscopy (PmFM) will be developed through the collaboration between the University of Washington and Asylum Research, which will enable quantitative characterization and manipulation of magnetoelastic coupling and magnetic domains with high sensitivity, high spatial resolution, and minimized cross-talk with topography. Magnetostrictive response and magnetic domains of Galfenol will be mapped and manipulated at the nanoscale using the proposed PmFM technique, and the obtained real space magnetoelastic response will be correlated with the underlying microstructure of Galfenol determined from detailed structural analysis. Modeling and simulation of the configuration and evolution of magnetic domains and transforming microstructures of Galfenol will also be carried out to link the nanoscale magnetostrictive response and macroscopic magnetostriction measurement. Through the tightly coupled experimental and theoretical investigations, the project will help to clarify the microscopic mechanism responsible for the enhanced magnetostriction in Galfenol.NON-TECHNICAL SUMMARY: Magnetostriction refers to magnetic field induced strain in ferromagnetic materials, and Galfenol is an emerging class of structural magnetostrictive material with excellent mechanical properties. It is promising for a wide range of applications in mechanically tough environments, such as underwater sonar transduction and damping or energy harvesting of mechanical vibrations, in which conventional giant magnetostrictive materials are not suitable because of their poor mechanical strength. The project will help to understand the microscopic mechanism responsible for the enhanced magnetostriction in Galfenol, and potentially guide the development of new structural magnetostrictive materials with even better properties. A novel scanning probe microscopy technique will also be developed, which can be applied to study a wide range of magnetic materials with enhanced sensitivity and resolution over the state of art magnetic force microscopy. Graduate and undergraduate students will be trained through integrated research and education that involve extensive collaborations with industry, and outreach activities will also be developed for high school students and teachers.
技术概述:本项目的目的是了解Galfenol或Fe-Ga合金中显著增强的磁致伸缩,即使Ga是非磁性的,其磁致伸缩应变也比α - fe高一个数量级。新型压磁力显微镜(PmFM)将通过华盛顿大学和收容所研究中心之间的合作开发,这将使磁弹性耦合和磁畴的定量表征和操作具有高灵敏度,高空间分辨率和最小化与地形的串扰。利用所提出的PmFM技术,将在纳米尺度上绘制和操纵Galfenol的磁致伸缩响应和磁畴,并将获得的真实空间磁弹性响应与通过详细结构分析确定的Galfenol的底层微观结构相关联。还将对Galfenol的磁畴构型、演化和微观结构转变进行建模和仿真,以将纳米级磁致伸缩响应与宏观磁致伸缩测量联系起来。通过紧密耦合的实验和理论研究,该项目将有助于阐明Galfenol磁致伸缩增强的微观机制。摘要:磁致伸缩是指铁磁性材料中的磁场感应应变,Galfenol是一类新兴的结构磁致伸缩材料,具有优异的力学性能。传统的超磁致伸缩材料因其机械强度差而不适合在机械恶劣环境中广泛应用,如水下声纳转导和机械振动的阻尼或能量收集。该项目将有助于了解Galfenol磁致伸缩增强的微观机制,并有可能指导具有更好性能的新型结构磁致伸缩材料的开发。一种新的扫描探针显微镜技术也将被开发出来,它可以应用于研究广泛的磁性材料,比目前最先进的磁力显微镜具有更高的灵敏度和分辨率。研究生和本科生将通过与工业界广泛合作的综合研究和教育进行培训,并为高中学生和教师开展拓展活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiangyu Li其他文献
Multiple P–T–d–t paths reveal the evolution of the final Nuna assembly in northeast Australia
多条 P-T-d-t 路径揭示了澳大利亚东北部努纳最终组装的演变
- DOI:
10.1111/jmg.12532 - 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
S. Volante;A. Pourteau;W. Collins;E. Blereau;Zheng‐Xiang Li;M. Smit;N. Evans;A. Nordsvan;C. Spencer;B. McDonald;Jiangyu Li;C. Günter - 通讯作者:
C. Günter
Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia
用热力学模型重新评估锆石-独居石测温法:来自澳大利亚东北部乔治敦火成岩杂岩的见解
- DOI:
10.1007/s00410-020-01752-7 - 发表时间:
2020 - 期刊:
- 影响因子:3.5
- 作者:
S. Volante;S. Volante;S. Volante;William J. Collins;E. Blereau;A. Pourteau;Christopher J. Spencer;N. Evans;V. Barrote;V. Barrote;A. Nordsvan;A. Nordsvan;Zheng;Jiangyu Li - 通讯作者:
Jiangyu Li
Precipitate morphologies of pseudobinary Sb2Te3–PbTe thermoelectric compounds
伪二元 Sb2Te3−PbTe 热电化合物的沉淀形貌
- DOI:
10.1016/j.actamat.2013.10.072 - 发表时间:
2014-02 - 期刊:
- 影响因子:9.4
- 作者:
Yunya Liu;Luqin Chen;Jiangyu Li - 通讯作者:
Jiangyu Li
Integrating nanodevice design, fabrication, and analysis into the mechanical engineering curriculum
将纳米器件设计、制造和分析融入机械工程课程
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Devasia;J. Borgford;J. Chung;Jiangyu Li;A. Shen;N. Sniadecki;Junlan Wang - 通讯作者:
Junlan Wang
A fast microbial detection algorithm based on high-throughput sequencing data
基于高通量测序数据的快速微生物检测算法
- DOI:
10.1145/3035012.3035014 - 发表时间:
2017 - 期刊:
- 影响因子:5.8
- 作者:
Jiangyu Li;Xiaolei Wang;Dongsheng Zhao;Yiqing Mao;Qian Cheng - 通讯作者:
Qian Cheng
Jiangyu Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiangyu Li', 18)}}的其他基金
Nanomechanics of Ferroelectric Fractures: Phase-Field Simulations and Piezoresponse Force Microscopy Characterizations
铁电断裂的纳米力学:相场模拟和压电响应力显微镜表征
- 批准号:
1100339 - 财政年份:2011
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Processing Nanocrystalline Thermoelectric Oxides for High Efficiency Energy Harvesting
加工纳米晶热电氧化物以实现高效能量收集
- 批准号:
0969543 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Group Travel Support for US Participation in the 8th International Workshop on Piezoresponse Force Microscopy and Nanoscale Electromechanics of Polar Materials
为美国参加第八届极性材料压电响应力显微镜和纳米机电国际研讨会提供团体旅行支持
- 批准号:
1034676 - 财政年份:2010
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Planning Visit for U.S. - China Collaborative Research on Multifunctional Materials
计划访问中美多功能材料合作研究
- 批准号:
0820583 - 财政年份:2008
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Magnetostrictive-Piezoelectric Nanocomposites with Unusual Magnetoelectric Properties
具有不寻常磁电特性的磁致伸缩压电纳米复合材料
- 批准号:
0706100 - 财政年份:2007
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Engineering Nanostructures of Electro-Active Polymeric Nanocomposites Using Nanoimprint Lithography
使用纳米压印光刻技术设计电活性聚合物纳米复合材料的纳米结构
- 批准号:
0727922 - 财政年份:2007
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Design, Manufacturing and Optimization of Ferroelectric Polymer Based Nanocomposite Films Using Langmuir-Blodgett Deposition
利用 Langmuir-Blodgett 沉积设计、制造和优化基于铁电聚合物的纳米复合薄膜
- 批准号:
0613060 - 财政年份:2006
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
SGER: Nanofabrication of Multiferroic Composites
SGER:多铁复合材料的纳米制造
- 批准号:
0631687 - 财政年份:2006
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Design, Manufacturing and Optimization of Ferroelectric Polymer Based Nanocomposite Films Using Langmuir-Blodgett Deposition
利用 Langmuir-Blodgett 沉积设计、制造和优化基于铁电聚合物的纳米复合薄膜
- 批准号:
0300014 - 财政年份:2003
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
相似海外基金
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
- 批准号:
2347562 - 财政年份:2024
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Shining Light on Metal Halide Perovskite Stability with Nanoscale Optical Characterization
通过纳米级光学表征揭示金属卤化物钙钛矿的稳定性
- 批准号:
EP/X014673/1 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Research Grant
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
- 批准号:
23H01835 - 财政年份:2023
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterization of the role of dimensionality in confined spaces for controlled reactivity at the nanoscale
表征尺寸在有限空间中对纳米级受控反应的作用
- 批准号:
DDG-2022-00009 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Development Grant
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
- 批准号:
RGPIN-2020-05418 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
- 批准号:
RGPIN-2021-02544 - 财政年份:2022
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
- 批准号:
RGPIN-2020-05418 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
- 批准号:
RGPIN-2021-02544 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
- 批准号:
DGECR-2021-00044 - 财政年份:2021
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Launch Supplement
Nanoscale characterization of mixed-layer chlorite minerals formation
混合层绿泥石矿物形成的纳米级表征
- 批准号:
20K14564 - 财政年份:2020
- 资助金额:
$ 31.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




