SGER: Nanofabrication of Multiferroic Composites

SGER:多铁复合材料的纳米制造

基本信息

  • 批准号:
    0631687
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL: This project will develop a novel processing technique for multiferroic composites using nanoimprinting lithography (NIL), which would allow much more precise control over the size, morphology, and distribution of second-phase fillers in polymer matrix than any other conventional nanocomposite processing techniques, and thus may lead to multiferroic composites with optimally designed and dramatically enhanced magnetoelectric properties. For their technological potential to be fully realized, the multiferroic materials, especially multiferroic composites, must demonstrate high magnetoelectric coupling factor. To accomplish this, it is essential to control the microstructure of multiferroic composites precisely, which is very difficult for traditional composite processing techniques. It is the objective of this project to explore new processing technique based on NIL to engineer the nanostructures of multiferroic composites for optimized magnetoelectric properties. The goal of this exploratory project is to engineer nanostructures of TbDyFe-PVDF multiferroic composites using NIL based technique for dramatically enhanced magnetoelectric properties. In particular, PI seeks to accomplish the following objectives: (1) Exploring a novel nanocomposite processing technique based on NIL to precisely control the size, morphology, and distributions of TbDyFe fillers in PVDF matrix; (2) Fabricating TbDyFe-PVDF multiferroic composites with optimally designed fillers size, morphology, and distribution for dramatically enhanced magnetoelectric coefficient, guided by our theoretical modeling and simulations; and (3) Characterizing the structures and functional properties of the TbDyFe-PVDF multiferroic composites, and validating PI's theoretical modeling and simulations. The research is exploratory in nature for the following reasons: (1) it is preliminary work on novel ideas, since processing of nanocomposites using NIL based technique is untested to the best knowledge of the PI; and (2) it ventures into emerging and potentially transformative research ideas, namely NIL, and extends it to processing of nanocomposites. Due to this exploratory nature, the research involves high risk, especially in the integration of NIL of polymer films with traditional thin film deposition techniques for metals, such as sputtering. On the other hand, it also offers huge potential. If successful, the proposed technique will allow us to precisely control the size, morphology, and distributions of second-phase fillers in the polymer matrix, and thus could lead to multiferroic composites with optimally designed nanostructures and dramatically enhanced magnetoelectric coefficient. NON-TECHNICAL: Multiferroic magnetoelectric materials display both magnetic and electric ordering, which in principle allows the interconversion of energies stored in magnetic and electric fields. This additional degree of freedom may result in new methods to probe materials, and may lead to design of novel devices including transducers, actuators, sensors, and storage devices. Efforts based on this work are likely to catalyze rapid and innovative advances not only in processing multiferroic composites, but also in processing other nanocomposites using NIL based techniques. The broader impacts in this project also include training for graduate student, and the potential applications of multiferroic composites. It may also lead innovate processing techniques for other polymer based nanocomposites.
技术:本项目将开发一种新的多铁复合材料的加工技术,使用纳米压印光刻技术(NIL),它可以比任何其他传统的纳米复合材料加工技术更精确地控制聚合物基体中第二相填料的尺寸、形态和分布,从而可能导致具有优化设计和显著增强磁电性能的多铁复合材料。多铁性材料,特别是多铁性复合材料,要充分发挥其技术潜力,必须具有较高的磁电耦合系数。为了实现这一目标,必须精确控制多铁复合材料的微观结构,这是传统复合材料加工技术难以做到的。本项目的目标是探索基于零铁的新型加工技术,以设计多铁复合材料的纳米结构,以优化磁电性能。这个探索性项目的目标是利用基于NIL的技术来设计TbDyFe-PVDF多铁复合材料的纳米结构,以显着提高磁电性能。特别是,PI寻求实现以下目标:(1)探索一种基于NIL的新型纳米复合材料加工技术,以精确控制PVDF基质中TbDyFe填料的尺寸,形态和分布;(2)在理论建模和仿真的指导下,优化设计填料尺寸、形貌和分布,制备TbDyFe-PVDF多铁复合材料,显著提高磁电系数;(3)表征了TbDyFe-PVDF多铁复合材料的结构和功能性能,并验证了PI的理论建模和仿真。该研究在本质上是探索性的,原因如下:(1)这是对新颖想法的初步研究,因为使用基于NIL的技术处理纳米复合材料尚未经过最佳PI知识的测试;(2)探索新兴的、具有潜在变革意义的研究理念,即NIL,并将其扩展到纳米复合材料的加工。由于这种探索性,该研究涉及高风险,特别是将聚合物薄膜的NIL与传统的金属薄膜沉积技术(如溅射)相结合。另一方面,它也提供了巨大的潜力。如果成功,该技术将使我们能够精确控制聚合物基体中第二相填料的尺寸、形态和分布,从而可以获得具有优化设计的纳米结构和显著增强的磁电系数的多铁复合材料。非技术:多铁性磁电材料显示磁性和电有序,原则上允许存储在磁场和电场中的能量相互转换。这种额外的自由度可能会产生探测材料的新方法,并可能导致设计新的设备,包括传感器、执行器、传感器和存储设备。基于这项工作的努力很可能催化快速和创新的进展,不仅在加工多铁复合材料,而且在加工其他纳米复合材料使用零铁为基础的技术。该项目的更广泛影响还包括研究生培训,以及多铁复合材料的潜在应用。它也可能引领其他聚合物基纳米复合材料的创新加工技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiangyu Li其他文献

Multiple P–T–d–t paths reveal the evolution of the final Nuna assembly in northeast Australia
多条 P-T-d-t 路径揭示了澳大利亚东北部努纳最终组装的演变
  • DOI:
    10.1111/jmg.12532
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Volante;A. Pourteau;W. Collins;E. Blereau;Zheng‐Xiang Li;M. Smit;N. Evans;A. Nordsvan;C. Spencer;B. McDonald;Jiangyu Li;C. Günter
  • 通讯作者:
    C. Günter
Reassessing zircon-monazite thermometry with thermodynamic modelling: insights from the Georgetown igneous complex, NE Australia
用热力学模型重新评估锆石-独居石测温法:来自澳大利亚东北部乔治敦火成岩杂岩的见解
  • DOI:
    10.1007/s00410-020-01752-7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    S. Volante;S. Volante;S. Volante;William J. Collins;E. Blereau;A. Pourteau;Christopher J. Spencer;N. Evans;V. Barrote;V. Barrote;A. Nordsvan;A. Nordsvan;Zheng;Jiangyu Li
  • 通讯作者:
    Jiangyu Li
Precipitate morphologies of pseudobinary Sb2Te3–PbTe thermoelectric compounds
伪二元 Sb2Te3−PbTe 热电化合物的沉淀形貌
  • DOI:
    10.1016/j.actamat.2013.10.072
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Yunya Liu;Luqin Chen;Jiangyu Li
  • 通讯作者:
    Jiangyu Li
Integrating nanodevice design, fabrication, and analysis into the mechanical engineering curriculum
将纳米器件设计、制造和分析融入机械工程课程
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Devasia;J. Borgford;J. Chung;Jiangyu Li;A. Shen;N. Sniadecki;Junlan Wang
  • 通讯作者:
    Junlan Wang
A fast microbial detection algorithm based on high-throughput sequencing data
基于高通量测序数据的快速微生物检测算法
  • DOI:
    10.1145/3035012.3035014
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Jiangyu Li;Xiaolei Wang;Dongsheng Zhao;Yiqing Mao;Qian Cheng
  • 通讯作者:
    Qian Cheng

Jiangyu Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiangyu Li', 18)}}的其他基金

Nanomechanics of Ferroelectric Fractures: Phase-Field Simulations and Piezoresponse Force Microscopy Characterizations
铁电断裂的纳米力学:相场模拟和压电响应力显微镜表征
  • 批准号:
    1100339
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Nanoscale Characterization and Manipulation of Magnetoelastic Coupling and Magnetic Domains by Novel Quantitative Scanning Probe Microscopy
GOALI:通过新型定量扫描探针显微镜对磁弹性耦合和磁域进行纳米级表征和操纵
  • 批准号:
    1006194
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Processing Nanocrystalline Thermoelectric Oxides for High Efficiency Energy Harvesting
加工纳米晶热电氧化物以实现高效能量收集
  • 批准号:
    0969543
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Group Travel Support for US Participation in the 8th International Workshop on Piezoresponse Force Microscopy and Nanoscale Electromechanics of Polar Materials
为美国参加第八届极性材料压电响应力显微镜和纳米机电国际研讨会提供团体旅行支持
  • 批准号:
    1034676
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Planning Visit for U.S. - China Collaborative Research on Multifunctional Materials
计划访问中美多功能材料合作研究
  • 批准号:
    0820583
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Magnetostrictive-Piezoelectric Nanocomposites with Unusual Magnetoelectric Properties
具有不寻常磁电特性的磁致伸缩压电纳米复合材料
  • 批准号:
    0706100
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering Nanostructures of Electro-Active Polymeric Nanocomposites Using Nanoimprint Lithography
使用纳米压印光刻技术设计电活性聚合物纳米复合材料的纳米结构
  • 批准号:
    0727922
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design, Manufacturing and Optimization of Ferroelectric Polymer Based Nanocomposite Films Using Langmuir-Blodgett Deposition
利用 Langmuir-Blodgett 沉积设计、制造和优化基于铁电聚合物的纳米复合薄膜
  • 批准号:
    0613060
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design, Manufacturing and Optimization of Ferroelectric Polymer Based Nanocomposite Films Using Langmuir-Blodgett Deposition
利用 Langmuir-Blodgett 沉积设计、制造和优化基于铁电聚合物的纳米复合薄膜
  • 批准号:
    0300014
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Integrated Tip-Enabled Nanofabrication and Characterisation at Atomic Scale
集成尖端纳米加工和原子级表征
  • 批准号:
    LE240100015
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301138
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301137
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Development of a Nanofabrication Lab Manual Featuring a Suite of Low-Cost Experiments to Enable Hands-On Training at Community and Technical Colleges
合作研究:开发纳米制造实验室手册,其中包含一套低成本实验,可在社区和技术学院进行实践培训
  • 批准号:
    2301140
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Direct Writing of Nanodevices: A Sustainable Route to Nanofabrication
纳米器件的直接写入:纳米制造的可持续之路
  • 批准号:
    EP/X016404/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Student Travel to International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 2023
学生前往参加 2023 年电子、离子和光子束技术与纳米制造国际会议
  • 批准号:
    2322911
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hierarchical Ta-Ti lattice materials by 3D printing and nanofabrication
通过 3D 打印和纳米加工制备分层 Ta-Ti 晶格材料
  • 批准号:
    DE230101344
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Adaptive nanofabrication of monolithic multifunctional sensing chips
单片多功能传感芯片的自适应纳米制造
  • 批准号:
    FT220100559
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了