Hierarchical and Shape-Intelligent Colloidal Particles via Lithographically Patterned Layered Precursors

通过光刻图案化层状前体获得分层且形状智能的胶体颗粒

基本信息

  • 批准号:
    1006776
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: The design and synthesis of nano- to micron-sized particles have been a perennial theme in interfacial and materials science. Particles have been prepared with a range of shape, size, and polydispersities more commonly through the sol-gel or emulsion polymerization methods. There has been a high interest on core-shell, hollow-shell, and hybrid particle systems. However, for polymer particles, hollow-shell templating and emulsion polymerization methods are largely limited to spherically shaped particles. This project aims to go beyond these limitations by employing a high-throughput particle fabrication method that offers various complexities in shape, size, size distribution, and core-shell architectures through lithographic methods. Specifically, novel particles based on lithographically patterned polymer precursor films of layer-by-layer (LbL) polyelectrolytes with a top layer of grafted polymer brushes by surface initiated polymerization (SIP) will be explored. The phase-interaction parameter contrast between the two layers will enable a "lift-off and fold-in" mechanism in a selective solvent: the LbL component folding in to form the interior core and the SIP as the outer shell. Many of the well-documented chemistries, fabrication methods, and applications of the LbL and SIP methods can be incorporated. It should be possible to distribute hierarchically the chemical species within these polymer particles allowing for anisotropically phase-separated multiphasic particle compositions. A fundamental challenge of the protocol is to match the kinetic and thermodynamic considerations of the solvent, temperature, and pressure environments once the particles are released from the surface. Various interfacial-sensitive spectroscopic, scattering, zeta potential, and microscopic techniques will be utilized to characterize these new colloidal materials. These particles are expected to be useful for the encapsulation of molecules, dyes, inorganic nanoparticles as nanocarriers and also serve as an important platform for the investigation of colloidal phenomena in polymeric and hybrid materials that can be augmented by theory and simulations studies.NON-TECHNICAL SUMMARY: The project will make available novel materials and products that can be used for the pharmaceutical industry, display industry, and environmental or health monitoring protocols. For example: drugs can be encapsulated and released by design; new light emitting materials can be made based on encapsulated nanoparticles, and particles with various artificial shapes and sizes can be used to mimic harmful viruses and bacteriophages. A number of scientists and engineers will be involved in exploring the limits of lithographic technologies similar to processes used for the semi-conductor microprocessor industry but applying it to particle production and investigation. An important immediate impact is the education and training of young scientists and researchers who are skilled in the synthesis and characterization of new materials combined with developing high-throughput fabrication methods. Two advanced Ph.D. candidates who are experienced and qualified in materials synthesis, colloidal fabrication, and surface characterization will be trained. Highly qualified undergraduate students will also be mentored. The analytical and materials expertise in the Advincula Research group encompasses different areas of polymer materials, hybrid materials, and surface science and has also been an effective platform for science and education outreach among high school students. The Principal Investigator (PI) will offer a Departmental course to include the design and uses of colloidal particles and the importance of surface analysis in materials research. The PI will target talented minority students and women to participate, a commitment by the PI since the beginning of his academic career.
纳米到微米尺寸颗粒的设计和合成一直是界面和材料科学的一个永恒主题。颗粒已被制备成具有一定范围的形状、尺寸和多分散性,更常见的是通过溶胶-凝胶或乳液聚合方法。核-壳、空-壳和混合粒子系统一直受到人们的高度关注。然而,对于聚合物颗粒,中空壳模板法和乳液聚合法在很大程度上限于球形颗粒。该项目旨在通过采用高通量颗粒制造方法来超越这些限制,该方法通过光刻方法提供形状,尺寸,尺寸分布和核壳结构的各种复杂性。 具体地,将探索基于光刻图案化的逐层(LbL)聚电解质的聚合物前体膜的新型颗粒,所述聚合物前体膜具有通过表面引发聚合(SIP)的接枝聚合物刷的顶层。两层之间的相相互作用参数对比将在选择性溶剂中实现“剥离和折叠”机制:LbL组分折叠以形成内部核和SIP作为外壳。 LbL和SIP方法的许多有据可查的化学、制造方法和应用都可以结合。应该可以在这些聚合物颗粒内分层分布化学物质,从而允许各向异性相分离的多相颗粒组合物。该协议的一个基本挑战是匹配的溶剂,温度和压力环境的动力学和热力学考虑,一旦颗粒从表面释放。各种界面敏感的光谱,散射,zeta电位和显微镜技术将被用来表征这些新的胶体材料。这些颗粒预期可用于作为纳米载体的分子、染料、无机纳米颗粒的包封,并且还用作研究聚合物和混合材料中的胶体现象的重要平台,所述聚合物和混合材料可通过理论和模拟研究来增强。该项目将提供可用于制药工业、显示器工业、以及环境或健康监测协议。举例来说:药物可以通过设计封装和释放;基于封装的纳米颗粒可以制造新的发光材料,并且具有各种人工形状和大小的颗粒可以用于模拟有害病毒和噬菌体。一些科学家和工程师将参与探索类似于半导体微处理器工业所用工艺的光刻技术的局限性,但将其应用于粒子生产和研究。一个重要的直接影响是教育和培训年轻科学家和研究人员,他们精通新材料的合成和表征,并开发高通量制造方法。两个高级博士在材料合成、胶体制造和表面表征方面有经验和资格的候选人将接受培训。高素质的本科生也将得到指导。Advincula研究小组的分析和材料专业知识涵盖了聚合物材料,混合材料和表面科学的不同领域,也是高中生科学和教育推广的有效平台。主要研究者(PI)将提供一个部门的课程,包括胶体颗粒的设计和使用以及材料研究中表面分析的重要性。PI将针对有才华的少数民族学生和妇女参与,这是PI自学术生涯开始以来的承诺。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rigoberto Advincula其他文献

Surface Manipulation of Conjugated Precursor Polymer Thin Films by AFM Nanolithography
通过 AFM 纳米光刻技术对共轭前驱体聚合物薄膜进行表面操作
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Baba;Ryohei Oyanagi;Yasuo Ohdaira;Kazunari Shinbo;Keizo Kato;Futao Kaneko;Guoqian Jiang;Rigoberto Advincula
  • 通讯作者:
    Rigoberto Advincula
チオール‐エン反応によるカルバゾール高分子膜/無機界面の改善
硫醇-烯反应改善咔唑聚合物膜/无机界面
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    齋藤隆喜;Paul Advincula;Rigoberto Advincula;田中邦明;臼井博明
  • 通讯作者:
    臼井博明

Rigoberto Advincula的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rigoberto Advincula', 18)}}的其他基金

Biomaterials Workshop: Instrumentation and Foundry to Advance Research
生物材料研讨会:仪器和铸造促进研究
  • 批准号:
    1623939
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Supramolecularly Templated Living REP-ROP Polymerizations and Block Copolymers
超分子模板化活性 REP-ROP 聚合和嵌段共聚物
  • 批准号:
    1608457
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Knotty Polymers via Supramolecularly Templated Living Free-Radical Polymerization Iniferters
EAGER:通过超分子模板活性自由基聚合引发剂制备多节聚合物
  • 批准号:
    1247438
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Hierarchical and Shape-Intelligent Colloidal Particles via Lithographically Patterned Layered Precursors
通过光刻图案化层状前体获得分层且形状智能的胶体颗粒
  • 批准号:
    1304214
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Knotty Polymers via Supramolecularly Templated Living Free-Radical Polymerization Iniferters
EAGER:通过超分子模板活性自由基聚合引发剂制备多节聚合物
  • 批准号:
    1041300
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Label-Free Protein Arrays Based on Linear Dendron Macromolecular Layers and In-Situ Real Time EC-SPR-AFM Methods
基于线性树枝状大分子层和原位实时 EC-SPR-AFM 方法的无标记蛋白质阵列
  • 批准号:
    0854979
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Conference on Conjugated Polymer Materials and Hybrids: Synthesis, Macromolecular Assemblies, and Nanostructures in association with the ACS Natl Meeting in Boston, MA in Aug 2007
共轭高分子材料和杂化物会议:合成、高分子组装和纳米结构,与 2007 年 8 月在马萨诸塞州波士顿举行的 ACS Natl 会议联合举办
  • 批准号:
    0732363
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Materials World Network: Multifunctional Nanostructured Nanoparticle-Conjugated Polymer Assemblies Prepared via Layer-by-Layer and Surface Initiated Polymerization (SIP) Approaches
材料世界网络:通过逐层和表面引发聚合(SIP)方法制备的多功能纳米结构纳米粒子共轭聚合物组件
  • 批准号:
    0602896
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Conjugated Polymer Ultrathin Films: Synthesis, Electropatterning, and Nanopatterning of Precursor Polymers
共轭聚合物超薄膜:前体聚合物的合成、电图案化和纳米图案化
  • 批准号:
    0504435
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Conference on Polyelectrolyte, Colloidal, and Nanoparticle Assemblies in Ultrathin Films, Anaheim, CA, March 28 - April 1, 2004.
超薄薄膜中的聚电解质、胶体和纳米颗粒组件会议,加利福尼亚州阿纳海姆,2004 年 3 月 28 日至 4 月 1 日。
  • 批准号:
    0423993
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

中医药协同SHAPE-T细胞治疗晚期胰腺癌的临床研究和免疫评价
  • 批准号:
    2024PT012
  • 批准年份:
    2024
  • 资助金额:
    17.5 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300156
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers
合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面
  • 批准号:
    2300157
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EFRI-ODISSEI: Photomorphon networks: Intelligent shape changing structures
EFRI-ODISSEI:光形态网络:智能形状变化结构
  • 批准号:
    1332271
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Hierarchical and Shape-Intelligent Colloidal Particles via Lithographically Patterned Layered Precursors
通过光刻图案化层状前体获得分层且形状智能的胶体颗粒
  • 批准号:
    1304214
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Intelligent Shape Editing with Robust Feature Analysis
具有强大特征分析的智能形状编辑
  • 批准号:
    EP/I000100/1
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Intelligent Interface for Shape Creation in a Virtual Space
用于在虚拟空间中创建形状的智能界面
  • 批准号:
    11680353
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent Adaptive Control for Weld Penetration by Monitoring Shape and Oscillation of Molten Pool
通过监测熔池形状和振动实现焊缝熔深智能自适应控制
  • 批准号:
    11650748
  • 财政年份:
    1999
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent Interface for 3-D Shape Manipulation Using Various-Shaped Elastic Objects as Input Tools
使用各种形状的弹性物体作为输入工具进行 3D 形状操作的智能接口
  • 批准号:
    10555079
  • 财政年份:
    1998
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
INVESTIGATION ON A NEW INTELLIGENT PROPERTIES OF SHAPE MEMORY ALLOY.
形状记忆合金新智能性能研究。
  • 批准号:
    07650099
  • 财政年份:
    1995
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DESIGN OF INTELLIGENT MATERIAL SYSTEM BY COMBINING THE CONTROL WITH EVALUATION OF SHAPE MEMORY ALLOY
形状记忆合金控制与评估相结合的智能材料系统设计
  • 批准号:
    07455047
  • 财政年份:
    1995
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了