Collaborative Research: Reconfigurable Intelligent Electromagnetic Surface Using Magnetic Shape Memory Polymers

合作研究:使用磁性形状记忆聚合物的可重构智能电磁表面

基本信息

  • 批准号:
    2300157
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The ability to dynamically manipulate electromagnetic waves by a flat aperture will lead to the realization of reconfigurable intelligent surfaces (RIS). This vision includes implementing such reconfigurable surfaces at cell tower base stations to increase capacity and serve more users for 5G and beyond wireless systems in both outdoor and indoor settings. Moreover, dynamic and arbitrary manipulation of electromagnetic wavefronts is an exciting and versatile tool for next-generation wireless communication, imaging, holography, surveillance, and sensing applications. Reconfigurability or programmability is a vital feature of such future agile radio frequency systems. Reconfigurable devices or circuits (e.g., diodes and variable capacitors) have been used in such smart systems to control radiation pattern, polarization, or operating frequency. This project investigates a new approach of using programmable soft materials, for the first time, on RIS. The new approach offers unique advantages over the state-of-art technologies. This project is an interdisciplinary and collaborative effort between the mmWave Antennas and Arrays Laboratory (School of Electrical and Computer Engineering at Georgia Institute of Technology) and the Soft Intelligent Materials Laboratory (Department of Mechanical Engineering at Stanford University).The research of this project is transformative as it challenges the conventional methods that have been applied to control RIS and reconfigure those wireless systems using them. The new approach is based on a viable mechanical reconfiguration method using shape memory polymers and magnetic actuation. Thus, unlike other state-of-the-art technologies, semiconductor switching devices such as diodes are no longer needed inside each unit cell. The advantage of this global reconfiguration method becomes even more important for large intelligent surfaces. In contrast to traditional reconfiguration schemes that use semiconductor devices such as diodes, the new architecture utilizes a unique and purely mechanical deformation that does not suffer from loss and nonlinearity associated with traditional semiconductor devices. In this project, researchers will use magnetically responsive soft materials to drive the multimodal mechanical shape reconfigurations of the RIS under an external magnetic field with several tens of millitesla. The project is expected to demonstrate several advantages of the new approach over existing state-of-art technologies, including programmability enabled by magnetic excitation, linearity, scalability, low operating voltage, low loss, and multimodal reconfiguration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过平面孔径动态操纵电磁波的能力将导致可重构智能表面(RIS)的实现。这一愿景包括在蜂窝塔基站实施这种可重构表面,以增加容量,并在室外和室内环境中为5G及其他无线系统的更多用户提供服务。此外,动态和任意操纵电磁波前是下一代无线通信、成像、全息、监视和传感应用的一种令人兴奋和通用的工具。可重构性或可编程性是这种未来敏捷射频系统的重要特征。可重构器件或电路(例如,二极管和可变电容器)已在此类智能系统中用于控制辐射方向图、极化或工作频率。该项目首次在RIS上研究了一种使用可编程软材料的新方法。与最先进的技术相比,这种新方法具有独特的优势。该项目是毫米波天线和阵列实验室(佐治亚理工学院电气与计算机工程学院)和软智能材料实验室(斯坦福大学机械工程系)之间的跨学科合作成果。该项目的研究具有变革性,因为它挑战了用于控制RIS的传统方法,并重新配置了使用它们的无线系统。新方法基于一种可行的利用形状记忆聚合物和磁致动的机械重构方法。因此,与其他最先进的技术不同,半导体开关设备,如二极管,不再需要在每个单元电池内。对于大型智能曲面,这种全局重构方法的优势显得尤为重要。与使用半导体器件(如二极管)的传统重构方案相比,新架构利用独特的纯机械变形,不会受到传统半导体器件相关的损耗和非线性的影响。在这个项目中,研究人员将使用磁响应软材料在几十毫特斯拉的外磁场下驱动RIS的多模态机械形状重构。该项目预计将展示新方法与现有最先进技术相比的几个优势,包括通过磁激励实现的可编程性、线性度、可扩展性、低工作电压、低损耗和多模态重构。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanics of hard-magnetic soft materials: A review
  • DOI:
    10.1016/j.mechmat.2023.104874
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Lu Lu-Lu;Jay Sim;Ruike Renee Zhao
  • 通讯作者:
    Lu Lu-Lu;Jay Sim;Ruike Renee Zhao
Magneto-Mechanical Metamaterials: A Perspective
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruike Renee Zhao其他文献

Buckling and post-buckling of cylindrical shells under combined torsional and axial loads
圆柱壳在扭转载荷与轴向载荷共同作用下的屈曲与后屈曲
  • DOI:
    10.1016/j.euromechsol.2025.105653
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Lu Lu;Sophie Leanza;Yang Liu;Ruike Renee Zhao
  • 通讯作者:
    Ruike Renee Zhao
The elastica with pre-stress due to natural curvature
由于自然曲率而具有预应力的松紧带
Reconfiguration of Electromagnetic Metasurfaces Using Tunable Shape Morphing Structures
使用可调谐形状变形结构重构电磁超表面
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David L. West;William Pavlick;Jay Sim;Jize Dai;Shuai Wu;Jack Eichenberger;Ruike Renee Zhao;N. Ghalichechian
  • 通讯作者:
    N. Ghalichechian
Machine learning-enabled forward prediction and inverse design of 4D-printed active plates
基于机器学习的 4D 打印活性板的正向预测和逆向设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xiaohao Sun;Liang Yue;Luxia Yu;Connor T Forte;Connor D. Armstrong;Kun Zhou;Frédéric Demoly;Ruike Renee Zhao;H. J. Qi
  • 通讯作者:
    H. J. Qi
Milli-spinner thrombectomy
微旋切取栓术
  • DOI:
    10.1038/s41586-025-09049-0
  • 发表时间:
    2025-06-04
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yilong Chang;Shuai Wu;Qi Li;Benjamin Pulli;Darren Salmi;Paul Yock;Jeremy J. Heit;Ruike Renee Zhao
  • 通讯作者:
    Ruike Renee Zhao

Ruike Renee Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruike Renee Zhao', 18)}}的其他基金

Collaborative Research: CPS: Medium: Autonomy of Origami-inspired Transformable Systems in Space Operations
合作研究:CPS:媒介:太空作战中受折纸启发的可变换系统的自主性
  • 批准号:
    2201344
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Micromechanics of Interactions Between Hard Magnetic Particles and Soft Matrix on Magneto-Mechanical Actuation
磁机械驱动中硬磁颗粒与软基体相互作用的微观力学
  • 批准号:
    2142789
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers
职业:磁性形状记忆聚合物的多物理力学
  • 批准号:
    2145601
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Origami-Based Extremely-Packed Multistable Pop-Up Design for Medical Masks
EAGER:合作研究:基于折纸的超密集多稳态弹出式医用口罩设计
  • 批准号:
    2029643
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Multiphysics Mechanics of Magnetic Shape Memory Polymers
职业:磁性形状记忆聚合物的多物理力学
  • 批准号:
    1943070
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Micromechanics of Interactions Between Hard Magnetic Particles and Soft Matrix on Magneto-Mechanical Actuation
磁机械驱动中硬磁颗粒与软基体相互作用的微观力学
  • 批准号:
    1939543
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
  • 批准号:
    2313084
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了