Strained Ultrathin Interfaces for Controlled Molecular Self-Assembly
用于受控分子自组装的应变超薄界面
基本信息
- 批准号:1006863
- 负责人:
- 金额:$ 43.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
***** NON-TECHNICAL ABSTRACT *****Self-assembly of ordered structures, a few nanometers wide, has been observed on many interfaces critical to novel nano-technologies. The formation of these structures is thought to arise because of a delicate balance between long-range strain field interactions and short-range chemical forces that stabilize the structures. A detailed understanding of the driving forces, however, does not exist. The goal of this project is to identify and control these interactions, which have the potential to radically improve the performance of electronic, magnetic, and chemical devices and sensors; and may lead the way to higher density magnetic storage, more selective catalytic materials, higher sensitivity chemical sensors, and perhaps, quantum computers. The integrated experimental/computational research approach combines time-resolved atomic microscopy in ultrahigh vacuum and elastic modeling of the dynamics of self-assembly at the atomic scale in conjunction with appropriate electronic structure calculations. The graduate and undergraduate students involved in this research will receive training in skills that will enable them to become productive members of the future scientific workforce. This research will form an integral part of an educational outreach program through contributions to a hands-on course, Physics for High School Teachers, and a Summer Nano-Science Institute for local high school students and their teachers, in order to address the need to improve the science achievement for students by enriching science teaching in the high school classroom. This award receives support from the Condensed Matter Physics and the Electronic and Photonic Materials programs.***** TECHNICAL ABSTRACT *****This award funds studies to characterize, control, and understand the atomic processes in self-organized growth that lead to two-dimensional pattern formation in strained ultrathin interfaces, such as single graphene and metal layers on crystalline substrates. The integrated experimental/computational approach combines time-resolved atomic measurements by scanning tunneling microscopy (STM) and low-energy electron microscopy (LEEM) and elastic modeling of the dynamics of self-assembly at the atomic scale in conjunction with appropriate first-principles and tight-binding electronic structure calculations. A novel analysis method of LEEM data will deliver the compositional (sub-)surface profile in these heterogeneous systems, crucial input for modeling and linking to theory. The graduate and undergraduate students involved in this research will receive training in skills that will enable them to become productive members of the future scientific workforce. The projects form an integral part of educational outreach programs. Through contributions to a hands-on course, Physics for High School Teachers, and a Summer Nano-Science Institute for local high school students and their science teachers the project addresses the need to improve the science achievement for students by enriching science teaching in the high school classroom. These activities are directed toward improving the recruitment into Science, Engineering, Technology, and Mathematics (STEM) careers by making significant contributions to science education at the pre-college level. This award receives support from the Condensed Matter Physics and the Electronic and Photonic Materials programs.
** 非技术摘要 * 在许多对新型纳米技术至关重要的界面上,已经观察到几纳米宽的有序结构的自组装。 这些结构的形成被认为是由于长程应变场相互作用和稳定结构的短程化学力之间的微妙平衡而产生的。 然而,对驱动力的详细了解并不存在。 该项目的目标是识别和控制这些相互作用,这些相互作用有可能从根本上提高电子,磁性和化学设备和传感器的性能;并可能导致更高密度的磁存储,更有选择性的催化材料,更高灵敏度的化学传感器,也许还有量子计算机。 集成的实验/计算研究方法结合了时间分辨原子显微镜在真空和弹性建模的自组装动力学在原子尺度结合适当的电子结构计算。 参与这项研究的研究生和本科生将接受技能培训,使他们能够成为未来科学劳动力的生产成员。 这项研究将形成一个教育推广计划的一个组成部分,通过贡献一个动手课程,高中教师物理,和一个夏季纳米科学研究所为当地高中学生和他们的老师,为了解决需要提高学生的科学成就丰富科学教学在高中课堂。 该奖项得到了凝聚态物理和电子与光子材料计划的支持。技术摘要 * 该奖项资助研究表征,控制和理解自组织生长中的原子过程,这些过程导致应变界面中的二维图案形成,例如晶体衬底上的单个石墨烯和金属层。 集成的实验/计算方法结合了时间分辨的原子测量扫描隧道显微镜(STM)和低能电子显微镜(LEEM)和弹性模型的自组装动力学在原子尺度结合适当的第一性原理和紧束缚电子结构计算。 LEEM数据的一种新的分析方法将在这些异质系统中提供成分(子)表面轮廓,这是建模和与理论联系的关键输入。参与这项研究的研究生和本科生将接受技能培训,使他们能够成为未来科学劳动力的生产成员。 这些项目是教育推广方案的一个组成部分。 通过对实践课程的贡献,高中教师的物理学,以及当地高中学生及其科学教师的夏季纳米科学研究所,该项目通过丰富高中课堂的科学教学来解决提高学生科学成就的需要。 这些活动旨在通过为大学预科水平的科学教育做出重大贡献,提高科学,工程,技术和数学(STEM)职业的招聘。 该奖项得到了凝聚态物理和电子与光子材料计划的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karsten Pohl其他文献
Karsten Pohl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karsten Pohl', 18)}}的其他基金
SGER: Controlling the Dispersion of Newly Discovered Acoustic Surface Plasmons
SGER:控制新发现的声表面等离子体激元的色散
- 批准号:
0753467 - 财政年份:2007
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
CAREER: Dynamics of Self-Assembly at Strained Metal Interfaces
职业:应变金属界面自组装动力学
- 批准号:
0134933 - 财政年份:2002
- 资助金额:
$ 43.5万 - 项目类别:
Continuing Grant
相似海外基金
PFI-RP: The rapid and specific detection of infectious pathogens using ultrathin porous membranes as sensors
PFI-RP:使用超薄多孔膜作为传感器快速、特异性地检测传染性病原体
- 批准号:
2234394 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Wafer-Scale Ultrathin Layered Device Array Assembly through a Precision Soft-Robotic Stamp Transfer Process
通过精密软机器人印模转移工艺组装晶圆级超薄分层器件阵列
- 批准号:
2243477 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
UHV Sputtering System for the Deposition of Ultrathin Films and Heterostructures
用于沉积超薄膜和异质结构的 UHV 溅射系统
- 批准号:
517957243 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Major Research Instrumentation
Characterization of dynamic heterogeneity in polymer ultrathin film systems and investigation of the origin of the decoupling in dynamics
聚合物超薄膜系统动态异质性的表征及动力学解耦起源的研究
- 批准号:
23K04853 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultrathin Gold Nanocrystal Conductors for Wearable Epidermal Biofuel Cells
用于可穿戴表皮生物燃料电池的超薄金纳米晶体导体
- 批准号:
DP230101377 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Discovery Projects
Creation and physical property investigations of molecular ultrathin film crystals with Kagome-honeycomb lattices
Kagome-蜂窝晶格分子超薄膜晶体的制备和物理性质研究
- 批准号:
23K17934 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Realization of kagome-lattice monolayer quantum materials by topotactic reactions of ultrathin films
超薄膜拓扑反应实现戈薇晶格单层量子材料
- 批准号:
23H01830 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Broadband and tunable enhanced chiral light-matter interactions at the visible with new ultrathin helical metamaterials
新型超薄螺旋超材料在可见光下实现宽带和可调谐增强手性光与物质相互作用
- 批准号:
2224456 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Standard Grant
Nano manufacturing of ultrathin membranes
超薄膜的纳米制造
- 批准号:
EP/X019225/1 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Research Grant
Tuning the Surface Plasmon Resonance of Gold Ultrathin Nanorod: The Role of Heterometal
调节金超薄纳米棒的表面等离子体共振:异质金属的作用
- 批准号:
23KF0198 - 财政年份:2023
- 资助金额:
$ 43.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




