Interactions Among Probability, Group Theory, Graph Theory, and Ergodic Theory
概率、群论、图论和遍历理论之间的相互作用
基本信息
- 批准号:1007244
- 负责人:
- 金额:$ 30.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is proposed to deepen various connections among the mathematical areas of probability, group theory, graph theory, and ergodic theory. Mainly this will be achieved by probabilistic thinking about questions that arise in other areas. In group theory, the PI will work on the question of whether every group is sofic. The PI discovered with Aldous that a probabilistic setting leads to a wider framework for this question and suggests a new approach to it. In graph theory, probabilistic thinking leads to new questions and results involving inequalities for finite graphs. Namely, one often finds when counting combinatorial objects that a subgraph contains fewer of them than the whole graph. But if the subgraph is based on fewer vertices, then one ought to normalize the counts to reflect this. The PI has some partial results in this direction and proposes to find more. In ergodic theory, questions involve graphings, colorings, and factors. In fact, it may be that these investigations will lead to progress in the theory of percolation on groups. Combining several of these areas are very natural processes that are related (by previous work of the PI) to algebraic invariants known as ell-2-Betti numbers. Therefore, they suggest ways of resolving an important open question about these Betti numbers.In the 19th century, Cayley introduced graphs (networks) to represent the algebraic objects known as groups. It is always desirable to have finite approximations to infinite objects, and the same holds for infinite groups.Gromov and Weiss suggested a way to use finite networks for this purpose.If one can actually succeed in making such approximations for all groups, then this would resolve a host of important conjectures in a variety of fields of mathematics. The PI proposes to continue work on this question.Inequalities are important in most areas of mathematics. The field of graph theory and combinatorics contains many inequalities, often of the form that certain graphs contain the most (or the fewest) possible objects of a certain type among all graphs in a given class. The PI will develop novel inequalities of this type, which are inspired by a probabilistic viewpoint.Topology is the study of the shape of things. One tool is to count the number of holes of various dimensions. But if the whole space of interest is infinite, then the number of holes is often either zero or infinity. It turns out that there is a more informative way to count holes, and previous work of the PI has shown how it is related to random combinatorial objects.Therefore, the PI will attempt to use his new random objects to resolve an important open question about this hole counting.
建议加深概率、群论、图论和遍历理论等数学领域之间的各种联系。 这主要是通过对其他领域出现的问题进行概率思考来实现的。 在群论中,PI 将研究每个群是否都是 sofic 的问题。 PI 与 Aldous 一起发现概率设置可以为这个问题带来更广泛的框架,并提出了一种新的解决方法。在图论中,概率思维引发了涉及有限图不等式的新问题和结果。 也就是说,在计算组合对象时,人们经常会发现子图包含的组合对象少于整个图。但是,如果子图基于较少的顶点,那么应该对计数进行标准化以反映这一点。 PI 在这方面取得了一些部分成果,并建议寻找更多成果。 在遍历理论中,问题涉及图形、着色和因子。事实上,这些研究可能会导致群体渗透理论的进步。 将其中几个区域组合起来是非常自然的过程,与称为 ell-2-Betti 数的代数不变量相关(通过 PI 之前的工作)。 因此,他们提出了解决有关这些贝蒂数的重要开放问题的方法。 在 19 世纪,凯莱引入了图(网络)来表示称为群的代数对象。 人们总是希望对无限对象进行有限近似,对于无限群也是如此。格罗莫夫和韦斯提出了一种使用有限网络来实现此目的的方法。如果人们真的能够成功地对所有群进行这种近似,那么这将解决数学各个领域中的许多重要猜想。 PI 建议继续研究这个问题。不等式在数学的大多数领域都很重要。图论和组合学领域包含许多不等式,通常的形式是某些图在给定类的所有图中包含某种类型的最多(或最少)可能的对象。受到概率观点的启发,PI 将开发出此类新颖的不等式。拓扑学是对事物形状的研究。一种工具是计算各种尺寸的孔的数量。但如果整个感兴趣的空间是无限的,那么孔的数量通常为零或无穷大。事实证明,有一种信息更丰富的方法来计算孔洞,并且 PI 之前的工作已经展示了它与随机组合对象的关系。因此,PI 将尝试使用他的新随机对象来解决有关此孔洞计数的重要悬而未决的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Lyons其他文献
Coalescing Particles on an Interval
- DOI:
10.1023/a:1021704912660 - 发表时间:
1999-01-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Larsen;Russell Lyons - 通讯作者:
Russell Lyons
Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations
- DOI:
10.1007/bf02776032 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Scot Adams;Russell Lyons - 通讯作者:
Russell Lyons
Russell Lyons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Lyons', 18)}}的其他基金
Probabilistic Models Tied to Group Theory, Analysis, and Ergodic Theory
与群论、分析和遍历理论相关的概率模型
- 批准号:
1954086 - 财政年份:2020
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Interactions Among Probability, Group Theory, Analysis, and Ergodic Theory
概率、群论、分析和遍历理论之间的相互作用
- 批准号:
1612363 - 财政年份:2016
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
2015 Seymour Sherman Memorial Conference
2015年西摩谢尔曼纪念会议
- 批准号:
1503743 - 财政年份:2015
- 资助金额:
$ 30.32万 - 项目类别:
Standard Grant
Probability on Combinatorial Structures
组合结构的概率
- 批准号:
0406017 - 财政年份:2004
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Statistical Physics on Groups and Determinantal Probabilities
群和行列概率的统计物理
- 批准号:
0231224 - 财政年份:2002
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Statistical Physics on Groups and Determinantal Probabilities
群和行列概率的统计物理
- 批准号:
0103897 - 财政年份:2001
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Spanning Trees, Matroids and Group-Invariant-Processes
生成树、拟阵和群不变过程
- 批准号:
9802663 - 财政年份:1998
- 资助金额:
$ 30.32万 - 项目类别:
Standard Grant
Mathematical Sciences: Probabilistic Aspects of Trees with Applications to Manifolds and Groups
数学科学:树的概率方面及其在流形和群中的应用
- 批准号:
9306954 - 财政年份:1993
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8605804 - 财政年份:1986
- 资助金额:
$ 30.32万 - 项目类别:
Fellowship Award
相似海外基金
Understanding Teacher Effectiveness and Retention Among Single Subject Math Program Completers in the First Five Years of Teaching
了解教师在教学前五年的效率和单科数学课程完成者的保留率
- 批准号:
2345187 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Standard Grant
Multi-component interventions to reducing unhealthy diets and physical inactivity among adolescents and youth in sub-Saharan Africa (Generation H)
采取多方干预措施减少撒哈拉以南非洲青少年的不健康饮食和缺乏身体活动(H 代)
- 批准号:
10106976 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
EU-Funded
Expanding syphilis screening among pregnant women in Indonesia using the rapid dual test for syphilis & HIV with capacity building: The DUALIS Study
使用梅毒快速双重检测扩大印度尼西亚孕妇梅毒筛查
- 批准号:
MR/Y004825/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Research Grant
The epidemiology of transmissible antimicrobial resistance among Shigella species
志贺菌属中传播性抗菌药物耐药性的流行病学
- 批准号:
MR/X000648/1 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Research Grant
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
S-STEM: Addressing Disparities in STEM Educational Access and Outcomes among Low-Income Students
S-STEM:解决低收入学生在 STEM 教育机会和成果方面的差异
- 批准号:
2322771 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Post-COVID-19 Multicultural Community Building in Japan: Enhancing Risk Communication and Resilience among Foreign Residents
COVID-19 后日本的多元文化社区建设:加强外国居民的风险沟通和抵御能力
- 批准号:
24K15447 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Continuing Grant
Minorities (dis)engagement in the majority-led social movements: a relational approach towards understanding the perception of "nation consciousness" among ethnoreligious minorities in the Middle East
少数群体(脱离)参与多数人主导的社会运动:一种理解中东民族宗教少数群体对“民族意识”认知的关系方法
- 批准号:
24K20991 - 财政年份:2024
- 资助金额:
$ 30.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists