Probability on Combinatorial Structures

组合结构的概率

基本信息

  • 批准号:
    0406017
  • 负责人:
  • 金额:
    $ 25.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-01 至 2008-04-30
  • 项目状态:
    已结题

项目摘要

0406017Lyons The PI is investigating questions in several areas of probability on various combinatorial structures. Many of these questions are set in a group-invariant context and the goal is to understand how geometric or algebraic properties of the group are reflected in probabilistic properties of the processes. The PI is working to establish basic topological properties of higher-dimensional analogues of random forests and to establish conjectures that arise by analogy to percolation. Phase transitions and entropy of other determinantal dynamical systems are also under investigation. Coupling questions are also at the heart of some stochastic comparison inequalities being studied. Basic questions concern comparison of the behavior of random walks in two random environments. The field of statistical physics is concerned to a great extent with mathematical models of phase transitions (e.g., water to ice). Typically the model of space is a fixed lattice, for example, the square lattice in two dimensions or the cubic lattice in three dimensions. This lattice is infinite and possesses the mathematical properties of what is called a group. The simplest model, known as percolation, originated in the study of fluid flow in the ground and gas flow through a gas mask. One asks how far fluid can flow, in particular, whether it can flow arbitrarily far. This, of course, depends on the density of particles that block the flow; there is a phase transition as the density increases, whereby after a certain point, with probability 1, fluid can no longer flow arbitrarily far. One would like to know where that point is and how the probability changes as this critical point is approached. About 15 years ago, several researchers began investigating lattices that are quite different from the usual Euclidean ones that are most familiar and that most closely correspond to our physical world. These new lattices, called nonamenable, are also usually based on groups. Such investigations began out of the usual scientific and mathematical curiosity that drives fundamental research. Within the last 8 years, this area of research, statistical physics on nonamenable groups, has seen an explosion of interest. This area of research turns out to be quite rich and to contain a large number of important fundamental questions whose answers remain unknown. Already, there have been applications to Euclidean lattices of some of the new ideas that have arisen in response to the need to develop new tools for nonamenable groups.
狮子座PI正在研究各种组合结构上的几个概率领域的问题。这些问题中的许多都是在群不变的背景下提出的,目的是了解群的几何或代数性质如何反映在过程的概率性质中。PI致力于建立随机森林的高维类似物的基本拓扑性质,并建立类似于渗流的猜想。其他行列式动力系统的相变和熵也在研究中。耦合问题也是正在研究的一些随机比较不等式的核心。基本问题涉及两个随机环境中随机行走行为的比较。统计物理领域在很大程度上涉及相变(例如,水到冰)的数学模型。通常,空间模型是固定的点阵,例如,二维的正方形点阵或三维的立方点阵。这个格子是无限的,并且具有所谓群的数学性质。最简单的渗流模型起源于对地下流体流动和通过防毒面具的气体流动的研究。有人问,流体能流到多远,特别是它是否能任意流得远。当然,这取决于阻止流动的粒子的密度;随着密度的增加,会有一个相变,在某个点之后,流体不能再以概率1的概率任意流动。人们想知道那个点在哪里,当接近这个临界点时,概率是如何变化的。大约15年前,几位研究人员开始研究与通常的欧几里得格子大不相同的格子,这些格子最熟悉,也最接近我们的物理世界。这些被称为不可服从的新格子通常也是基于群的。这类研究始于通常的科学和数学好奇心,这种好奇心推动了基础研究。在过去的8年里,这一领域的研究--关于不可服从群体的统计物理学--引起了人们的极大兴趣。事实证明,这一领域的研究相当丰富,包含了大量重要的基本问题,这些问题的答案仍然未知。已经有一些新思想应用于欧几里得格子,这些新思想是为了响应为不可服从群开发新工具的需要而出现的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Lyons其他文献

Coalescing Particles on an Interval
  • DOI:
    10.1023/a:1021704912660
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Michael Larsen;Russell Lyons
  • 通讯作者:
    Russell Lyons
Amenability, Kazhdan’s property and percolation for trees, groups and equivalence relations
  • DOI:
    10.1007/bf02776032
  • 发表时间:
    1991-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Scot Adams;Russell Lyons
  • 通讯作者:
    Russell Lyons

Russell Lyons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Lyons', 18)}}的其他基金

Probabilistic Models Tied to Group Theory, Analysis, and Ergodic Theory
与群论、分析和遍历理论相关的概率模型
  • 批准号:
    1954086
  • 财政年份:
    2020
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Interactions Among Probability, Group Theory, Analysis, and Ergodic Theory
概率、群论、分析和遍历理论之间的相互作用
  • 批准号:
    1612363
  • 财政年份:
    2016
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
2015 Seymour Sherman Memorial Conference
2015年西摩谢尔曼纪念会议
  • 批准号:
    1503743
  • 财政年份:
    2015
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Interactions Among Probability, Group Theory, Graph Theory, and Ergodic Theory
概率、群论、图论和遍历理论之间的相互作用
  • 批准号:
    1007244
  • 财政年份:
    2010
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Probability and Discrete Structures
概率和离散结构
  • 批准号:
    0705518
  • 财政年份:
    2007
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Statistical Physics on Groups and Determinantal Probabilities
群和行列概率的统计物理
  • 批准号:
    0231224
  • 财政年份:
    2002
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Statistical Physics on Groups and Determinantal Probabilities
群和行列概率的统计物理
  • 批准号:
    0103897
  • 财政年份:
    2001
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Spanning Trees, Matroids and Group-Invariant-Processes
生成树、拟阵和群不变过程
  • 批准号:
    9802663
  • 财政年份:
    1998
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Probabilistic Aspects of Trees with Applications to Manifolds and Groups
数学科学:树的概率方面及其在流形和群中的应用
  • 批准号:
    9306954
  • 财政年份:
    1993
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8605804
  • 财政年份:
    1986
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Fellowship Award

相似海外基金

Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
  • 批准号:
    22KJ2603
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combinatorial Structures in Cluster Algebras
簇代数中的组合结构
  • 批准号:
    2246570
  • 财政年份:
    2023
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Combinatorial Microscopies: Platforms for Probing Molecular and Cellular Dynamics and Structures
组合显微镜:探测分子和细胞动力学和结构的平台
  • 批准号:
    RGPIN-2022-04837
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
  • 批准号:
    22K03398
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial designs with cyclic structures for designs of experiments, combinatorial testing, and codes
用于实验设计、组合测试和代码的循环结构组合设计
  • 批准号:
    22K13949
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combinatorial structures in quantum field theory
量子场论中的组合结构
  • 批准号:
    RGPIN-2019-04412
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
  • 批准号:
    RGPIN-2017-04157
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Discovery Grants Program - Individual
Exploiting the Combinatorial Structures Found in Constraint Programming Models as Multivariate Distributions
利用约束规划模型中的组合结构作为多元分布
  • 批准号:
    RGPIN-2017-05783
  • 财政年份:
    2022
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial and Algebraic Structures in Dynamics
动力学中的组合和代数结构
  • 批准号:
    2054643
  • 财政年份:
    2021
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Standard Grant
Singularity analysis and the large scale behaviour of combinatorial structures
奇点分析和组合结构的大规模行为
  • 批准号:
    RGPIN-2017-04157
  • 财政年份:
    2021
  • 资助金额:
    $ 25.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了