Optimal Design for Non-Linear Models, With an Emphasis on Categorical Data

非线性模型的优化设计,重点是分类数据

基本信息

  • 批准号:
    1007507
  • 负责人:
  • 金额:
    $ 21.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The investigator identifies optimal and efficient designs for non-linear models. The focus is on (1) generalized linear models (GLMs) for binary data or count data; and (2) non-linear models for Event Related functional Magnetic Resonance Imaging (ER-fMRI) experiments. For the first of these, recent results are mostly restricted to models with a single covariate. The investigator studies common GLMs, such as logistic, probit and loglinear models, with multiple covariates and higher order terms. He develops novel theory and computational tools for identifying locally optimal designs under various optimality criteria as well as for identifying robust designs. For the second problem, the investigator identifies optimal and efficient designs under more realistic non-linear models for the combined objectives of estimation of the hemodynamic response function (HRF) and detection of brain activity. Traditionally, two separate linear models have been used for these disparate objectives. The use of a single non-linear model for modeling the hemodynamic response facilitates the simultaneous pursuit of both objectives. This approach provides not only a more natural formulation of design optimality criteria, but also results in better designs for ER-fMRI experiments.Binary data and count data are very common in many scientific fields, such as drug discovery, clinical trials, social sciences, marketing, etc. While models and methods of analysis for such data are well established, the study of optimal design for the efficient use of available resources lags considerably. For example, when planning a dose-response study, it is important to know which dose levels of a drug should be used in the study, and how many subjects should be assigned to these levels in order to get the most information for questions that are of scientific interest. Recent advances and new tools developed by the investigator and his collaborators make it possible to derive optimal designs for a variety of commonly used models. For a second part of the project, the investigator finds efficient designs for ER-fMRI experiments. These experiments are part of a cutting edge approach for studying brain activity caused by certain simple tasks. A subject in an MRI scanner is presented with a series of tasks, each of them repeated multiple times, and the hemodynamic response is measured. The investigator identifies optimal and efficient orders for presenting the tasks to a subject in order to gain as much information as possible for the scientific goals of the experiment.
研究人员确定非线性模型的最佳和有效的设计。重点是(1)二进制数据或计数数据的广义线性模型(GLM);和(2)事件相关功能磁共振成像(ER-fMRI)实验的非线性模型。对于其中的第一个,最近的结果大多局限于一个单一的协变量的模型。研究者研究常见的GLM,如logistic、probit和对数线性模型,具有多个协变量和高阶项。他开发了新的理论和计算工具,用于识别各种最优性标准下的局部最优设计以及识别鲁棒设计。对于第二个问题,研究人员确定最佳和有效的设计下更现实的非线性模型的血流动力学反应函数(HRF)的估计和脑活动的检测的组合目标。传统上,两个独立的线性模型已被用于这些不同的目标。使用单个非线性模型对血流动力学响应进行建模,有助于同时追求两个目标。这种方法不仅提供了一个更自然的设计最优性标准的公式,而且还导致更好的设计ER fMRI实验.二进制数据和计数数据是非常常见的许多科学领域,如药物发现,临床试验,社会科学,市场营销等.虽然模型和方法的分析,这些数据是很好地建立,关于有效利用现有资源的最佳设计的研究相当滞后。例如,在计划剂量反应研究时,重要的是要知道研究中应使用何种剂量水平的药物,以及应将多少受试者分配到这些水平,以便获得最多的科学问题信息。研究人员及其合作者开发的最新进展和新工具使得为各种常用模型导出最佳设计成为可能。在该项目的第二部分,研究人员发现了ER-fMRI实验的有效设计。这些实验是研究某些简单任务引起的大脑活动的尖端方法的一部分。MRI扫描仪中的受试者被呈现一系列任务,其中每个任务重复多次,并且测量血液动力学反应。研究者确定最佳和有效的顺序,以向受试者呈现任务,以便为实验的科学目标获得尽可能多的信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Stufken其他文献

Variance Approximation Under Balanced Sampling Plans Excluding Adjacent Units
Approximations of the information matrix for a panel mixed logit model

John Stufken的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Stufken', 18)}}的其他基金

Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
  • 批准号:
    2210576
  • 财政年份:
    2022
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
  • 批准号:
    2304767
  • 财政年份:
    2022
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1935729
  • 财政年份:
    2019
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
  • 批准号:
    1811363
  • 财政年份:
    2018
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
  • 批准号:
    1506125
  • 财政年份:
    2014
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Continuing Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
  • 批准号:
    1406760
  • 财政年份:
    2014
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Continuing Grant
Design and Analysis of Experiments
实验设计与分析
  • 批准号:
    1217801
  • 财政年份:
    2012
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Dimension Reduction, Model Selection and Classification in Functional Data Analysis.
函数数据分析中的降维、模型选择和分类。
  • 批准号:
    1105634
  • 财政年份:
    2011
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design of Experiments for Categorical Data
协作研究:分类数据实验的优化设计
  • 批准号:
    0706917
  • 财政年份:
    2007
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Design of Experiments: Improving Practicability of Some Useful Concepts
数学科学:实验设计:提高一些有用概念的实用性
  • 批准号:
    9504882
  • 财政年份:
    1995
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
  • 批准号:
    10075892
  • 财政年份:
    2023
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Collaborative R&D
Towards the optimal design of non-smooth mechanical systems
非光滑机械系统的优化设计
  • 批准号:
    CRC-2017-00010
  • 财政年份:
    2022
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Canada Research Chairs
Towards The Optimal Design Of Non-Smooth Mechanical Systems
非光滑机械系统的优化设计
  • 批准号:
    CRC-2017-00010
  • 财政年份:
    2021
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Canada Research Chairs
Towards the optimal design of non-smooth mechanical systems
非光滑机械系统的优化设计
  • 批准号:
    CRC-2017-00010
  • 财政年份:
    2020
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Canada Research Chairs
Towards the optimal design of non-smooth mechanical systems
非光滑机械系统的优化设计
  • 批准号:
    CRC-2017-00010
  • 财政年份:
    2019
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Canada Research Chairs
Towards the optimal design of non-smooth mechanical *systems
非光滑机械*系统的优化设计
  • 批准号:
    CRC-2017-00010
  • 财政年份:
    2018
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Canada Research Chairs
Optimal design for linear models with non-normal error distributions
具有非正态误差分布的线性模型的优化设计
  • 批准号:
    448965-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 21.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Optimal Waveform Design and Compensation Techniques for Non Linear Communication Channels
非线性通信通道的优化波形设计和补偿技术
  • 批准号:
    ARC : LP0216266
  • 财政年份:
    2002
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Linkage Projects
Optimal Waveform Design and Compensation Techniques for Non Linear Communication Channels
非线性通信通道的优化波形设计和补偿技术
  • 批准号:
    LP0216266
  • 财政年份:
    2002
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Linkage Projects
Dynamics and optimal design of mechanical systems with special emphasis on guided and non-guided vehicles
机械系统的动力学和优化设计,特别强调制导和非制导车辆
  • 批准号:
    6153-1993
  • 财政年份:
    1996
  • 资助金额:
    $ 21.94万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了