Dimension Reduction, Model Selection and Classification in Functional Data Analysis.
函数数据分析中的降维、模型选择和分类。
基本信息
- 批准号:1105634
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Functional data analysis aims to model and analyze data sets where a datum is a random function, e.g. a curve or a high dimensional image. Due to the fast growth of modern data collection methods, such data sets become more and more prevalent in many biological, medical and industrial applications. Functional data are viewed as infinite dimensional vectors in a functional space, and are usually observed on discrete points and measured with error. Due to the infinite dimensional nature of functional data, dimension reduction is essential for visualizing, modeling and making inference on these data. In the proposed project, the investigator will study new, computationally efficient dimension reduction methods for functional data based on spline approximations, and use asymptotic theory to develop new statistical devices for model selection and inference. The investigator will also study classification problems in functional data, by combining the proposed dimension reduction techniques with modern machine learning methods.The proposed research is motivated by data from colon carcinogenesis experiments, hypertension studies, AIDS clinical trials and functional magnetic resonance imaging experiments. The proposed project will benefit the society by advancing knowledge in these scientific fields. To achieve broader dissemination of the research results, the investigator will provide free and user friendly software to all scientific researchers. A new course on functional data analysis will be developed in the investigator's institute. The new course aims to nurture the ability of students to analyze real and innovative data sets and help them gain deeper understanding of modern statistical methods and theory.
函数数据分析旨在对数据集进行建模和分析,其中数据是随机函数,例如曲线或高维图像。由于现代数据收集方法的快速发展,这样的数据集在许多生物、医学和工业应用中变得越来越普遍。函数数据被视为函数空间中的无穷维向量,通常在离散点上观察并测量误差。由于函数数据的无限维性质,降维对于这些数据的可视化,建模和推理至关重要。在拟议的项目中,研究人员将研究新的,计算效率高的降维方法的基础上样条近似的功能数据,并使用渐近理论开发新的统计设备的模型选择和推理。研究人员还将研究功能数据的分类问题,通过结合所提出的降维技术与现代机器学习方法,所提出的研究是由来自结肠癌实验,高血压研究,艾滋病临床试验和功能磁共振成像实验的数据激发的。拟议的项目将通过促进这些科学领域的知识而造福社会。为了更广泛地传播研究成果,研究人员将向所有科学研究人员提供免费和用户友好的软件。将在调查员研究所开设一门关于功能数据分析的新课程。新课程旨在培养学生分析真实的和创新的数据集的能力,帮助他们加深对现代统计方法和理论的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Stufken其他文献
Variance Approximation Under Balanced Sampling Plans Excluding Adjacent Units
- DOI:
10.1080/15598608.2011.10412057 - 发表时间:
2011-03-01 - 期刊:
- 影响因子:0.900
- 作者:
James H. Wright;John Stufken - 通讯作者:
John Stufken
Approximations of the information matrix for a panel mixed logit model
- DOI:
10.1080/15598608.2016.1219288 - 发表时间:
2017-06-01 - 期刊:
- 影响因子:0.900
- 作者:
Wei Zhang;Abhyuday Mandal;John Stufken - 通讯作者:
John Stufken
John Stufken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Stufken', 18)}}的其他基金
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2210576 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Design-Based Optimal Subdata Selection Using Mixture-of-Experts Models to Account for Big Data Heterogeneity
协作研究:基于设计的最佳子数据选择,使用专家混合模型来解释大数据异构性
- 批准号:
2304767 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
- 批准号:
1935729 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
- 批准号:
1811363 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
- 批准号:
1506125 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative research: A major leap forward: Optimal designs for correlated data, multiple objectives, and multiple covariates
协作研究:重大飞跃:相关数据、多目标和多协变量的优化设计
- 批准号:
1406760 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Optimal Design for Non-Linear Models, With an Emphasis on Categorical Data
非线性模型的优化设计,重点是分类数据
- 批准号:
1007507 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Optimal Design of Experiments for Categorical Data
协作研究:分类数据实验的优化设计
- 批准号:
0706917 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Design of Experiments: Improving Practicability of Some Useful Concepts
数学科学:实验设计:提高一些有用概念的实用性
- 批准号:
9504882 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2350325 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Developing an HIV, STBBI and Harm Reduction Centred Model of Care for Women and Other Pregnant and Parenting People and Families: Catalyzing a Community-based Research Agenda
为妇女和其他怀孕和育儿人士及家庭制定以艾滋病毒、STBBI 和减少危害为中心的护理模式:促进基于社区的研究议程
- 批准号:
487995 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Operating Grants
Development of a computable general equilibrium model considering innovative carbon dioxide reduction technologies and the application of climate change policy assessment
考虑创新的二氧化碳减排技术和气候变化政策评估的应用,开发可计算的一般均衡模型
- 批准号:
22KJ1905 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Demonstration and model construction for reduction of acoustical minor loss using micro fluid device
利用微流体装置减少声学微小损失的演示和模型构建
- 批准号:
23K03653 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
- 批准号:
23KJ1202 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
- 批准号:
EP/X026027/1 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Fellowship
Construction of a NET Utilizing Exchange Model Based on the Effect Verification of NET Contributing to the Reduction of Maladjustment Symptoms in University Students
基于NET的效果验证构建NET利用交换模型有助于减少大学生适应不良症状
- 批准号:
23K02997 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model Reduction Methods for Extended Quantum Systems: Analysis and Applications
扩展量子系统的模型简化方法:分析与应用
- 批准号:
2309814 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant