Simultaneous Confidence Regions for Functional Data Analysis: Theory and Methods
函数数据分析的同时置信区域:理论与方法
基本信息
- 批准号:1007594
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project provides simultaneous confidence regions for various functional features in functional data analysis (FDA), with asymptotic theory and guide to practical implementation. Specifically, asymptotically correct confidence regions will be constructed for (1) the mean function of functional data and the coefficient function in varying coefficient longitudinal regression model; and (2) the covariance function of functional data and the regression function in functional linear model. For the simpler functions in (1), the investigator will employ both regression spline and local polynomial methods in order to establish rigorous asymptotic theory for both sparse and dense function data. Results on partial sum strong approximation by Brownian motions and advanced extreme value theory for sequences of non-stationary Gaussian processes will be applied to obtain distributional properties of the maximal deviation processes. For the more complicated functions in (2), the investigator will propose two-step estimators and show that it is asymptotically as efficient as some ?infeasible? analogs. Asymptotic distributions for maximal deviations are established for the ?infeasible estimators? which are then inherited by the two-step estimators.Functional data, also known as curve data, consist of collections of digitally recorded curves or surfaces, often with random errors. Such data abound in virtually all scientific disciplines, including but not limited to, climatology, clinical studies, epidemiology, evolutionary biology and food engineering/science. The need to draw information out of a sample of curves, coupled with the unleashing of modern computing power, has made functional data analysis (FDA) one of the most active areas of contemporary statistics research. While multivariate statistics is about unknown vectors and matrices, FDA concerns unknown curves and surfaces, which is most naturally done with confidence regions. The methods developed by the investigator fill a major gap in the current FDA methodology, which lacks procedures to make conclusions on an entire curve with quantifiable uncertainty. Codes written in common software packages such as Matlab or R will be freely distributed so practitioners from academia and industry for analyzing functional data in real time, with own chosen significance levels. Completing this project depends crucially on several capable Ph. D. students working under the investigator?s supervision, so state-of-the-art research is integrated with the training of graduate students as future researchers, consistent with NSF's education goal.
This research project provides simultaneous confidence regions for various functional features in functional data analysis (FDA), with asymptotic theory and guide to practical implementation. Specifically, asymptotically correct confidence regions will be constructed for (1) the mean function of functional data and the coefficient function in varying coefficient longitudinal regression model; and (2) the covariance function of functional data and the regression function in functional linear model. For the simpler functions in (1), the investigator will employ both regression spline and local polynomial methods in order to establish rigorous asymptotic theory for both sparse and dense function data. Results on partial sum strong approximation by Brownian motions and advanced extreme value theory for sequences of non-stationary Gaussian processes will be applied to obtain distributional properties of the maximal deviation processes. For the more complicated functions in (2), the investigator will propose two-step estimators and show that it is asymptotically as efficient as some ?infeasible? analogs. Asymptotic distributions for maximal deviations are established for the ?infeasible estimators? which are then inherited by the two-step estimators.Functional data, also known as curve data, consist of collections of digitally recorded curves or surfaces, often with random errors. Such data abound in virtually all scientific disciplines, including but not limited to, climatology, clinical studies, epidemiology, evolutionary biology and food engineering/science. The need to draw information out of a sample of curves, coupled with the unleashing of modern computing power, has made functional data analysis (FDA) one of the most active areas of contemporary statistics research. While multivariate statistics is about unknown vectors and matrices, FDA concerns unknown curves and surfaces, which is most naturally done with confidence regions. The methods developed by the investigator fill a major gap in the current FDA methodology, which lacks procedures to make conclusions on an entire curve with quantifiable uncertainty. Codes written in common software packages such as Matlab or R will be freely distributed so practitioners from academia and industry for analyzing functional data in real time, with own chosen significance levels. Completing this project depends crucially on several capable Ph. D. students working under the investigator?s supervision, so state-of-the-art research is integrated with the training of graduate students as future researchers, consistent with NSF's education goal.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijian Yang其他文献
One-Step Stereoselective Synthesis of (2Z,4Z,6Z,8Z)-Decatetraene Diketone from Pyrylium Salts
由吡喃鎓盐一步立体选择性合成(2Z,4Z,6Z,8Z)-十碳四烯二酮
- DOI:
10.1002/ejoc.201301685 - 发表时间:
2014 - 期刊:
- 影响因子:2.8
- 作者:
Lijian Yang;Junwei Ye;Yuan Gao;D. Deng;Yuan Lin;G. Ning - 通讯作者:
G. Ning
EFFICIENT AND FAST SPLINE-BACKFITTED KERNEL SMOOTHING OF ADDITIVE REGRESSION MODEL ∗
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Lijian Yang - 通讯作者:
Lijian Yang
div class=pagediv class=layoutAreadiv class=columnbr /Characteristics of CARMA1-BCL10-MALT1-A20-NF-κBexpression in T cell-acute lymphocytic leukemia br //div/div
T细胞急性淋巴细胞白血病CARMA1-BCL10-MALT1-A20-NF-κB表达特点
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.2
- 作者:
Xu Wang;Fan Zhang;Shaohua Chen;Lijian Yang;Gengxin Luo;Xin Huang;Suming Huang;Xiuli Wu;Yangqiu Li - 通讯作者:
Yangqiu Li
DOOB, IGNATOV AND OPTIONAL SKIPPING
DOOB、IGNATOV 和可选跳过
- DOI:
10.1214/aop/1039548377 - 发表时间:
2002 - 期刊:
- 影响因子:2.3
- 作者:
G. Simons;Yi;Lijian Yang - 通讯作者:
Lijian Yang
Spline Single-Index Prediction Model
样条单指标预测模型
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Li Wang;Lijian Yang - 通讯作者:
Lijian Yang
Lijian Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijian Yang', 18)}}的其他基金
Reduction of Infinite Data Dimension via B Spline Smoothing
通过 B 样条平滑减少无限数据维度
- 批准号:
0706518 - 财政年份:2007
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Monte-Carlo multi-step ahead forecasting for nonlinear time series
非线性时间序列的蒙特卡洛多步超前预测
- 批准号:
0405330 - 财政年份:2004
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Non- and Semi-parametric Identification and Prediction of Autoregressive Models, with Applications to Econometrics
自回归模型的非参数和半参数识别和预测及其在计量经济学中的应用
- 批准号:
9971186 - 财政年份:1999
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似海外基金
Increasing confidence in Australian carbon disclosures
增强对澳大利亚碳披露的信心
- 批准号:
DP240100414 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Discovery Projects
An Empirical Study of the Determinants and Consequences of Citizens' Confidence in the Armed Forces
公民对武装部队信心的决定因素及其后果的实证研究
- 批准号:
23KJ2013 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Drive with Confidence: A Safe and Secure Driving System to Mitigate Remote Vehicle Hijacking Risks
放心驾驶:安全可靠的驾驶系统,可降低远程车辆劫持风险
- 批准号:
10077064 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Studentship
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
- 批准号:
10612611 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Development and testing of a tool to assess health workers' clinical confidence to provide perinatal bereavement care in Sub-Saharan Africa
开发和测试工具来评估卫生工作者在撒哈拉以南非洲地区提供围产期丧亲护理的临床信心
- 批准号:
MR/X004082/1 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Research Grant
A novel mobile application improves balance confidence in walking aid users
新颖的移动应用程序提高了助行器用户的平衡信心
- 批准号:
497850 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
- 批准号:
2220537 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Using AI to improve our understanding of verbal confidence and to aid decision-making: Eyewitness lineup identification as a model case
使用人工智能提高我们对言语信心的理解并辅助决策:以目击者阵容识别为典型案例
- 批准号:
2241989 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
Building Confidence through Inquiry, Research, Community Leadership, and Engagement
通过探究、研究、社区领导和参与建立信心
- 批准号:
2236107 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant