ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence

ATD:具有统计置信度的实时动态风险识别算法

基本信息

  • 批准号:
    2220537
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Recent advancements in digital technologies, such as wide-bandwidth networks, online marketplaces, large supply chain and logistics networks, widespread smartphone usage, wearable devices, and digital health technologies, have facilitated the generation and storage of near-real-time, high-resolution datasets. These datasets are sequentially available at a high frequency from a large number of subjects, spanning various fields including healthcare, medicine, mobile health, supply chain, and network monitoring. This type of data collection, commonly referred to as streaming data, has brought about a paradigm shift in technology and presents significant opportunities for real-time threat detection by monitoring data in motion and making continuous decisions in a timely manner. This research project leverages the potential of streaming data research by developing algorithms for real-time dynamic risk identification that fully explore the unique features of massive data streams. The project will provide research training opportunities for graduate students.The investigators aim to develop algorithms and statistical methods for real-time risk detection in streaming data, particularly in the domains of electronic medical records, mobile health, and supply chain. The developed approaches allow for dynamic revision of statistical models, efficient storage of summary statistics, and accurate detection of threats and abnormal behaviors as new data arrives. By incorporating dependent and non-identically distributed samples, the project moves away from simplistic models and embraces new frameworks to reflect domain problems and data realities. The approaches will be applied to address significant scientific questions in HIV prevention, mobile health with depression disorders, and supply chain disruptions. The project will create a unified framework for dynamic risk identification that can be readily incorporated into various disciplines, fostering collaborations with subject-matter scientists, and involving students in state-of-the-art research through educational initiatives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近数字技术的进步,如宽带网络、在线市场、大型供应链和物流网络、智能手机的广泛使用、可穿戴设备和数字健康技术,促进了近实时、高分辨率数据集的生成和存储。这些数据集是从大量对象的高频顺序获得的,涵盖医疗保健、医学、移动健康、供应链和网络监控等多个领域。这种类型的数据收集,通常称为流数据,带来了技术范式的转变,并通过监控动态数据和及时做出持续决策,为实时威胁检测提供了重要机会。该研究项目充分利用了流数据研究的潜力,开发了实时动态风险识别算法,充分探索了海量数据流的独特特征。该项目将为研究生提供研究培训机会。研究人员的目标是开发在流数据中实时风险检测的算法和统计方法,特别是在电子医疗记录、移动医疗和供应链领域。开发的方法允许动态修订统计模型,高效存储汇总统计数据,并在新数据到达时准确检测威胁和异常行为。通过合并相关和非相同分布的样本,该项目摆脱了简单化的模型,并采用了新的框架来反映领域问题和数据现实。这些方法将被应用于解决艾滋病毒预防、患有抑郁症的移动医疗和供应链中断等重大科学问题。该项目将为动态风险识别创建一个统一的框架,该框架可以很容易地纳入到不同的学科中,促进与主题科学家的合作,并通过教育倡议让学生参与最先进的研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingshen Wang其他文献

Comparative study of a nano-bacterial rat kidney stone model and the traditional ethylene glycol rat kidney stone model
纳米细菌大鼠肾结石模型与传统乙二醇大鼠肾结石模型的对比研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Qian;Jingshen Wang;Z. Hao;Yuan Wang;Heng Yang;Yongle Li;Minghui Tan;Guoxi Zhang;X. Zou
  • 通讯作者:
    X. Zou
Systematic identification of modifiable risk factors and drug repurposing options for Alzheimer's disease: Mendelian randomization analyses
系统识别阿尔茨海默病的可改变风险因素和药物再利用选择:孟德尔随机分析
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chong Wu;Lang Wu;Jingshen Wang;Lifeng Lin;Yanming Li;Qing Lu;Hong
  • 通讯作者:
    Hong
Rudi Kundini, Pamoja Kundini (RKPK): study protocol for a hybrid type 1 randomized effectiveness-implementation trial using data science and economic incentive strategies to strengthen the continuity of care among people living with HIV in Tanzania
Rudi Kundini、Pamoja Kundini (RKPK):使用数据科学和经济激励策略来加强坦桑尼亚艾滋病毒感染者护理连续性的 1 型混合随机有效性实施试验的研究方案
  • DOI:
    10.1186/s13063-024-07960-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Jillian L Kadota;Laura Packel;Matilda Mlowe;Nzovu K Ulenga;Natalino Mwenda;P. Njau;William H Dow;Jingshen Wang;Amon Sabasaba;Sandra I McCoy
  • 通讯作者:
    Sandra I McCoy
Debiased inference on heterogeneous quantile treatment effects with regression rank scores
使用回归排名分数对异质分位数治疗效果进行去偏推断
Preoperative risk factors associated with urosepsis following percutaneous nephrolithotomy: a meta-analysis
经皮肾镜取石术后尿脓毒症相关的术前危险因素:一项荟萃分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Hao;Jingshen Wang;Qinzhang Wang;Guangchao Luan;Biao Qian
  • 通讯作者:
    Biao Qian

Jingshen Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingshen Wang', 18)}}的其他基金

CAREER: Adaptive experiments towards learning treatment effect heterogeneity
职业:学习治疗效果异质性的适应性实验
  • 批准号:
    2239047
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Robust Post-Selection Inference with Application to Subgroup Analysis
稳健的选择后推理及其在子组分析中的应用
  • 批准号:
    2015325
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Study of non-parametric reconstruction algorithms of gravitational wave for real-time detection
实时探测引力波非参数重构算法研究
  • 批准号:
    22KF0329
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Combining real-time airborne bioaerosol spectrometry with neural network algorithms to quantify different bioaerosol emissions from agriculture.
将实时空气生物气溶胶光谱测定与神经网络算法相结合,量化农业中不同的生物气溶胶排放。
  • 批准号:
    2878964
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
  • 批准号:
    2141256
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
  • 批准号:
    2150096
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
  • 批准号:
    2150292
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
The Development of Machine Learning Algorithms to Identify Perioperative Adverse Events Using Real-world Data
使用真实数据识别围手术期不良事件的机器学习算法的开发
  • 批准号:
    471987
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Programs
Autonomous spectral fingerprinting of consumable oil adulteration via terahertz time-domain spectroscopy and classification algorithms for real time food processing safety and quality assurance.
通过太赫兹时域光谱和分类算法对食用油掺假进行自主光谱指纹识别,以实现实时食品加工安全和质量保证。
  • 批准号:
    560133-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Machine learning algorithms to identify proteins in mass spectrometry data in real-time
机器学习算法实时识别质谱数据中的蛋白质
  • 批准号:
    575126-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了