Pricing, Hedging and Measuring Risk in Markets with Transaction Costs
用交易成本定价、对冲和衡量市场风险
基本信息
- 批准号:1007938
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to solve problems of hedging and pricing in markets where transaction costs are present. Closely related is the question on how to measure risk in these markets. The difficulty lies in the fact that transaction costs lead in a natural way to set-valued constructions. Set-valued risk measures for random solvency cones are studied. An example is the superhedging price of a multivariate claim under transaction costs. This link makes it possible to study price bounds that are more reasonable from a practical point of view like good deal bounds and indifference prices, which have already proven to be a powerful pricing mechanism in frictionless incomplete markets. Another goal is to solve a hedging problem in markets with transaction costs when the risk of falling short a contingent claim is evaluated by a set-valued risk measure. The above problems are solved by means of a recent convex duality theory, particularly designed for set-valued functions. Especially, dual problems for the main set-valued problem and its subproblems are established and conditions for strong duality will be studied. The chosen model itself, a set-valued optimization problem, as well as the proposed solution methods are new in mathematical finance andbeyond: The approach also extends concepts from optimization theory.Models for markets with transaction costs are more realistic than frictionless models. The finance industry benefits from research in hedging, pricing and risk managing techniques as there is a need to cope with bid-ask-spreads for traded assets caused by transaction costs. In complex market situations it is an advantage to have flexible tools for risk evaluation in terms of more than one currency and corresponding risk managing techniques. Thus, this research project leads to a better understanding of multivariate risks.
本项目的目标是解决存在交易成本的市场中的套期保值和定价问题。 与此密切相关的问题是如何衡量这些市场的风险。 困难在于,交易成本以一种自然的方式导致集值构造。研究了随机偿付能力锥的集值风险度量。 一个例子是交易费用下的多元索赔的超套期保值价格。 这种联系使得研究从实际角度来看更合理的价格界限成为可能,比如好交易界限和无差异价格,它们已经被证明是无摩擦不完全市场中强大的定价机制。 另一个目标是解决有交易费用的市场中的套期保值问题时,短期或有索赔的风险是由一个集值风险度量评估。 上述问题的解决,通过最近的凸对偶理论,特别是集值函数设计。 特别地,建立了主集值问题及其子问题的对偶问题,并研究了强对偶的条件。 所选择的模型本身,一个集值优化问题,以及所提出的解决方法是新的数学金融和超越:该方法还扩展了优化理论的概念。有交易成本的市场模型比无摩擦模型更现实。 金融业从对冲、定价和风险管理技术的研究中受益,因为需要应对交易成本导致的交易资产的买卖价差。 在复杂的市场情况下,拥有灵活的多种货币风险评估工具和相应的风险管理技术是一个优势。 因此,该研究项目导致更好地理解多元风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Birgit Rudloff其他文献
Elicitability and identifiability of set-valued measures of systemic risk
系统性风险的定值度量的可导出性和可识别性
- DOI:
10.1007/s00780-020-00446-z - 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Tobias Fissler;Jana Hlavinov'a;Birgit Rudloff - 通讯作者:
Birgit Rudloff
Time Consistency of the Mean-Risk Problem
平均风险问题的时间一致性
- DOI:
10.1287/opre.2020.2002 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Gabriela Kováčová;Birgit Rudloff - 通讯作者:
Birgit Rudloff
Convex Hedging in Incomplete Markets
- DOI:
10.1080/13504860701352206 - 发表时间:
2007-12 - 期刊:
- 影响因子:0
- 作者:
Birgit Rudloff - 通讯作者:
Birgit Rudloff
Coherent hedging in incomplete markets
不完全市场中的一致对冲
- DOI:
10.1080/14697680802169787 - 发表时间:
2009 - 期刊:
- 影响因子:1.3
- 作者:
Birgit Rudloff - 通讯作者:
Birgit Rudloff
A Characterization Theorem for Aumann Integrals
- DOI:
10.1007/s11228-014-0309-0 - 发表时间:
2014-11-14 - 期刊:
- 影响因子:1.100
- 作者:
Çağın Ararat;Birgit Rudloff - 通讯作者:
Birgit Rudloff
Birgit Rudloff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
sRNA伴侣Hfq介导的III型分泌系统抑制调节维氏气单胞菌两头下注(bet-hedging)合作毒力
- 批准号:32360047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
貞節か浮気か?雌の一雄繰り返し交尾と多雄各一回交尾によるbet-hedging戦略
贞操还是欺骗?
- 批准号:
24K09608 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Metabolic Bet-Hedging as a mechanism for the maintenance of functional diversity in tree-ectomycorrhizal mutualisms
合作研究:代谢下注对冲作为维持树外生菌根互利共生功能多样性的机制
- 批准号:
2316522 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Price Discovery in Equity and Volatility Futures for Trading and Hedging
用于交易和对冲的股票和波动率期货的价格发现
- 批准号:
DP230101472 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Collaborative Research: Metabolic Bet-Hedging as a mechanism for the maintenance of functional diversity in tree-ectomycorrhizal mutualisms
合作研究:代谢下注对冲作为维持树外生菌根互利共生功能多样性的机制
- 批准号:
2316523 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Assessing Hedging Risks of Novel Reactor Designs
评估新型反应堆设计的对冲风险
- 批准号:
2745907 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Studentship
Functional Calculus for Pathwise Hedging
路径对冲的函数微积分
- 批准号:
EP/W007215/1 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Hedging Predictions for Operational Decision Making
运营决策的对冲预测
- 批准号:
RGPIN-2022-05007 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Hedging of longevity/mortality risks and statistical approaches to modelling mortality rates
长寿/死亡风险的对冲和死亡率建模的统计方法
- 批准号:
RGPIN-2019-06782 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Global hedging in incomplete markets
不完全市场中的全球对冲
- 批准号:
RGPIN-2017-06837 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Hedging our (moral) bets: applying the methods of decision theory to decision-making under moral uncertainty
对冲我们的(道德)赌注:将决策理论的方法应用于道德不确定性下的决策
- 批准号:
2609159 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Studentship