Hedging Predictions for Operational Decision Making
运营决策的对冲预测
基本信息
- 批准号:RGPIN-2022-05007
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past several years, with the growing availability of data, there has been an explosion in research on using machine learning (and statistical) techniques to make predictions. However, less attention has been paid to how to effectively use these predictions to make effective operational decisions, where the predictions are related to demand (processing times, demand quantities). In particular, the stochastic modelling literature is almost exclusively concerned with scenarios where predictions are error-free or where no predictions are available (decisions are based only on distributional information). This proposal addresses this gap in the literature in two directions. The first major focus is on quantifying the "price of misprediction", the cost of naively using predicted values in place of true values, measured against the cost of using only distributional information (no predictions). When the price of misprediction is high, it then becomes of interest to design operational decision policies that extract useful information from the noisy predictions while hedging against the potential negative impacts of prediction errors. The design of such policies is the second major focus of this proposal. To gain insight into these issues, two of the most popular stochastic models will be considered. The first, queueing models, will be studied when predictions of processing times are available. Of particular interest will be the effect of scaling up the size of the system (number of servers) on the price of misprediction and the design of effective server scheduling and job routing strategies. We believe that larger systems are less sensitive to prediction errors. The second, inventory models, will be studied when demand predictions are available. We will study the impact of the prediction accuracy and sensitivity of the impact of prediction error to the cost function being considered, in particular suggesting approaches to determine safety stocks to hedge against prediction errors. For both of these models, implementability will be a key concern. Optimal policies may become quite complicated, so the identification of simple, near optimal policies will be an important consideration that will allow this work to be translated to practice. Beyond addressing gaps in the academic literature, this work is expected to have practical impact. We are already involved in projects for inventory management for blood products, and have seen that demand for some products can be more accurately predicted than others, so our results should inform effective inventory management practices in this domain. Healthcare, retail sales, manufacturing and information systems are other examples of areas that are data-rich and predictions of underlying quantities related to demand are possible (or are already being performed). As such, they are all potential beneficiaries of the proposed research.
在过去的几年里,随着数据的日益可用性,使用机器学习(和统计)技术进行预测的研究出现了爆炸式增长。然而,很少关注如何有效地使用这些预测来做出有效的操作决策,其中预测与需求(处理时间,需求数量)相关。特别是,随机建模文献几乎只关注预测没有错误或没有预测可用的情况(决策仅基于分布信息)。本提案从两个方向解决了文献中的这一空白。第一个重点是量化“错误预测的代价”,即天真地使用预测值代替真实值的成本,与只使用分布信息(没有预测)的成本进行比较。当错误预测的代价很高时,设计操作决策策略,从嘈杂的预测中提取有用的信息,同时对冲预测错误的潜在负面影响,就变得有趣了。这些政策的设计是本建议的第二个重点。为了深入了解这些问题,我们将考虑两个最流行的随机模型。第一种,排队模型,将在预测处理时间可用时进行研究。特别令人感兴趣的是扩大系统大小(服务器数量)对错误预测代价的影响,以及有效服务器调度和作业路由策略的设计。我们认为较大的系统对预测误差不太敏感。第二种是库存模型,将在需求预测可用时进行研究。我们将研究预测精度的影响和预测误差对所考虑的成本函数影响的敏感性,特别是建议确定安全库存以对冲预测误差的方法。对于这两种模型,可实现性将是一个关键问题。最优策略可能会变得相当复杂,因此确定简单的、接近最优的策略将是一个重要的考虑因素,这将使这项工作能够转化为实践。除了解决学术文献中的空白之外,这项工作有望产生实际影响。我们已经参与了血液制品库存管理项目,并且已经看到对某些产品的需求可以比其他产品更准确地预测,因此我们的结果应该为该领域有效的库存管理实践提供信息。医疗保健、零售销售、制造业和信息系统是数据丰富的领域的其他例子,与需求相关的潜在数量预测是可能的(或已经在执行)。因此,他们都是拟议研究的潜在受益者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Down, Douglas其他文献
Down, Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Down, Douglas', 18)}}的其他基金
McMASTER + HHSC Triage system and Demand Modelling Tool
McMASTER HHSC 分类系统和需求建模工具
- 批准号:
570999-2022 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Idea to Innovation
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2020
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Integrated control of data centres
数据中心综合控制
- 批准号:
506142-2016 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Collaborative Research and Development Grants
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Integrated control of data centres
数据中心综合控制
- 批准号:
506142-2016 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Collaborative Research and Development Grants
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Integrated control of data centres
数据中心综合控制
- 批准号:
506142-2016 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Collaborative Research and Development Grants
Service Rate Control of On/Off Servers
开/关服务器的服务速率控制
- 批准号:
RGPIN-2016-04518 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
- 批准号:
DE240100327 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Early Career Researcher Award
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
- 批准号:
MR/X033139/1 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Fellowship
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
- 批准号:
DP240100269 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Projects
Mud pumping under rail tracks: from Micromechanics to Predictions
铁轨下的泥浆泵送:从微观力学到预测
- 批准号:
DP240102765 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Projects
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MFB: RNA modifications of frameshifting stimulators: cellular platforms to engineer gene expression by computational mutation predictions and functional experiments
MFB:移码刺激器的RNA修饰:通过计算突变预测和功能实验来设计基因表达的细胞平台
- 批准号:
2330628 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
CAREER: Harnessing Emergent Simplicity for High-Precision Predictions in High-Diversity Microbial Ecosystems
职业:利用新兴的简单性在高多样性微生物生态系统中进行高精度预测
- 批准号:
2340791 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
Collaborative Research: ORCC: Integrated mechanistic predictions of ecological and evolutionary responses to increasing aridity across the range of an iconic species
合作研究:ORCC:对标志性物种范围内日益干旱的生态和进化反应的综合机制预测
- 批准号:
2307792 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Neural circuitry of predictions and prediction errors in the auditory system
听觉系统中预测和预测误差的神经回路
- 批准号:
23K14298 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists