Swimming Phenomenon from the Viewpoint of Controllability Theory for Partial Differential Equations

从偏微分方程可控性理论角度看游泳现象

基本信息

  • 批准号:
    1007981
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

This project develops new methodology to study controllability properties of swimming locomotion. Unlike other approaches available in this area, which reduce the analytical study of swimming phenomena to finite dimensional models, in this study, the problem is attacked in its original intrinsic realm of highly nonlinear infinite dimensional distributed parameter systems. A particular feature of the approach is that it links the swimmer?s motion to an explicit analysis of its internal forces and shape-changing strategy. The former is determined by the choice of respective scalar multiplicative controls, while the latter is regarded as a geometric control. These types of controls are novel in the context of mathematical controllability theory for partial differential equations.This field is of great interest in biological and engineering applications, especially when dealing with propulsion systems in fluids. Of particular importance are three-dimensional models of bio-mimetic devices, which employ the change of their geometry, inflicted by internal forces, as the means for self-propulsion in a fluid. A specific focus of this project is the development of methodology as to how one can recalculate the swimmer?s internal forces into the forces that act upon the surrounding fluid as determined by the swimmer?s shape. This is a key issue for understanding the nature of swimming phenomena and these models are critical for better understanding of the mechanics of swimming and flying motions of biological organisms.
本课题为研究游泳运动的可控性特性提供了新的方法。与该领域现有的将游泳现象的分析研究简化为有限维模型的方法不同,在本研究中,该问题在其原始的高度非线性无限维分布参数系统的固有领域中受到攻击。这种方法的一个特别之处在于,它将游泳者?对S运动进行了明确的内力分析和变形策略。前者由各自标量乘法控制的选择决定,而后者被视为几何控制。在偏微分方程的数学可控性理论背景下,这些类型的控制是新颖的。该领域在生物和工程应用中具有重要意义,特别是在处理流体推进系统时。特别重要的是仿生装置的三维模型,它利用内力造成的几何变化作为在流体中自我推进的手段。这个项目的一个重点是方法论的发展,即如何重新计算游泳者?S内力转化为作用在周围流体上的力,由游泳者决定?s形状。这是理解游泳现象本质的关键问题,这些模型对于更好地理解生物有机体游泳和飞行运动的力学至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Khapalov其他文献

Alexander Khapalov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Khapalov', 18)}}的其他基金

Controllability for swimming phenomena
游泳现象的可控性
  • 批准号:
    0504093
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Bilinear Controllability of Semilinear Partial Differential Equations
半线性偏微分方程的双线性可控性
  • 批准号:
    0204037
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似海外基金

The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spin-controlled optical oscillator using the spin-optical oscillation phenomenon
利用自旋光振荡现象的自旋控制光振荡器
  • 批准号:
    23K17758
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Emergent Behavior in a Dish: Discovery of Bi-directional Spiraling as a Population Phenomenon in C. elegans Enables In-Depth Dissection of Mechanisms Underlying Group Behaviors
培养皿中的突现行为:发现秀丽隐杆线虫中的双向螺旋种群现象,有助于深入剖析群体行为背后的机制
  • 批准号:
    10724212
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
Elucidation of the whole picture and heat transfer process of pool boiling phenomenon in liquid hydrogen from atmospheric to critical pressure
阐明液氢从常压到临界压力池沸腾现象的全貌及传热过程
  • 批准号:
    23H01349
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Is motor neuron death occurring in the cervical spinal cord in the early stages of development a phenomenon associated with the formation of the cervical region common to birds and mammals?
颈脊髓在发育早期发生的运动神经元死亡是否是与鸟类和哺乳动物常见的颈部区域形成相关的现象?
  • 批准号:
    23K06307
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The tree planting phenomenon: A 'giant leap' for climate change mitigation or mere greenwashing?
植树现象:减缓气候变化的“巨大飞跃”还是仅仅是洗绿?
  • 批准号:
    2887664
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Studentship
Empowering Preservice Science Teachers and Science Educators via Phenomenon-based Learning
通过基于现象的学习增强职前科学教师和科学教育者的能力
  • 批准号:
    2315246
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
For the comprehension of the large-scale flowering phenomenon of bamboos (Poales: Poaceae)
为了理解竹子的大规模开花现象(Poales:禾本科)
  • 批准号:
    23K13989
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of a new view of the Earth that integrates the environment, life and resources based on the understanding of the phenomenon of asteroid impacts in oceans
基于对小行星撞击海洋现象的认识,构建环境、生命、资源融为一体的新地球观
  • 批准号:
    23H05453
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Establishment of a foundation for understanding the phenomenon of autophagy and the clinical application of autophagy inhibitors.
为理解自噬现象和自噬抑制剂的临床应用奠定基础。
  • 批准号:
    23KJ1811
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了