Controllability for swimming phenomena

游泳现象的可控性

基本信息

  • 批准号:
    0504093
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-15 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop a methodology for the study of controllability properties of complex coupled nonlinear systems of partial and ordinary differential (or integro-differential) equations modeling the swimming phenomena. These systems include the fluid equations (for example, Stokes or Navier-Stokes equations) and the equations describing the position of a swimming device (or a living organism) in the fluid. The swimming motion of the latter is the result of the action of "internal" forces generated by the device, which also serve as the "external" forces for the surrounding fluid. In a typical swimming model the aforementioned internal forces are either the forces, preserving the structure of the device at hand or the "propulsion" forces (for example, of rotation or rowing nature), which make it swim. The magnitudes of the latter forces are modeled as coefficients and serve as nontraditional (in the framework of the mathematical controllability theory) multiplicative or bilinear controls.In this project we will investigate the mathematical nature of the swimming motion of a mechanical device (such as a robotic fish or a robotic eel) or a living organism in a fluid. What makes the latter to swim the way it does? Or more precisely, what kind forces are necessary to employ to achieve the desirable swimming motion? How can we design a mechanical device that can do the same? Answers to these questions are of great interest in biological and medical applications and in engineering applications dealing with propulsion systems in fluids.
该项目的目标是开发一种方法来研究模拟游泳现象的偏微分和常微分(或积分微分)方程的复杂耦合非线性系统的可控性特性。这些系统包括流体方程(例如斯托克斯或纳维-斯托克斯方程)和描述游泳装置(或活体)在流体中的位置的方程。后者的游动是装置产生的“内部”力作用的结果,该“内部”力也充当周围流体的“外部”力。在典型的游泳模型中,上述内力要么是保持手边装置结构的力,要么是使其游泳的“推进”力(例如,旋转或划船性质)。后者的力的大小被建模为系数,并用作非传统(在数学可控性理论的框架中)乘法或双线性控制。在这个项目中,我们将研究机械设备(例如机器鱼或机器鳗)或流体中活生物体游泳运动的数学性质。是什么让后者以这种方式游泳?或者更准确地说,需要使用什么样的力才能实现理想的游泳动作?我们怎样才能设计出具有同样功能的机械装置呢?这些问题的答案对于生物和医学应用以及涉及流体推进系统的工程应用非常有意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Khapalov其他文献

Alexander Khapalov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Khapalov', 18)}}的其他基金

Swimming Phenomenon from the Viewpoint of Controllability Theory for Partial Differential Equations
从偏微分方程可控性理论角度看游泳现象
  • 批准号:
    1007981
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bilinear Controllability of Semilinear Partial Differential Equations
半线性偏微分方程的双线性可控性
  • 批准号:
    0204037
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Integrated Swimming Microrobots for Intravascular Neuromodulation
合作研究:用于血管内神经调节的集成游泳微型机器人
  • 批准号:
    2324999
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Swimming Microrobots for Intravascular Neuromodulation
合作研究:用于血管内神经调节的集成游泳微型机器人
  • 批准号:
    2325000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
  • 批准号:
    2309442
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Feasibility study of remote autonomous operation of grain-swimming robot
粮泳机器人远程自主作业可行性研究
  • 批准号:
    10081082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
  • 批准号:
    10721086
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of a novel ventral pallidum population expressing corticotropin-releasing factor receptor 1
表达促肾上腺皮质激素释放因子受体 1 的新型腹侧苍白球群体的研究
  • 批准号:
    10677069
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
  • 批准号:
    10646579
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
  • 批准号:
    10545266
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Environmental Agents as Modulators of Disease Processes
环境因素作为疾病过程的调节剂
  • 批准号:
    10852393
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regulation of Cellular Behavior in Response to Extracellular Cues
响应细胞外信号的细胞行为调节
  • 批准号:
    10853789
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了