Nonequilibrium Statistical Physics Description of Pulse-Coupled Dynamics on Complex Network Topologies

复杂网络拓扑上脉冲耦合动力学的非平衡统计物理描述

基本信息

  • 批准号:
    1009575
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The last few decades of accumulated experimental and theoretical evidence indicate that, in order to understand network dynamics arising from the study of complex information processing systems, such as the brain, one must first understand dynamical consequences of the pulse-coupled interactions between and amongst nodes. The dynamics of each individual node, such as a neuron, are highly nonlinear, the underlying network topology is anything but homogeneous, and the most relevant network phenomena exhibit structural features over a multitude of spatiotemporal scales. To advance the understanding of pulsed-coupled networks arising from the study of complex information-processing systems, it is critical to develop a general conceptual framework capable of formulating coarse-grained, statistical descriptions of large-scale pulse-coupled network dynamics over complex network topologies. Current mathematical tools, such as techniques from statistical mechanics, cannot be readily applied to these pulsed-coupled systems, since most of the assumptions upon which these techniques are based (e.g., stationarity, homogeneity of the interaction network, etc.) simply do not hold. The aim of the proposed research is to take a first step towards tackling these conceptual issues via: (i) The systematic extension of kinetic theory formulations of uncorrelated homogeneous pulsed-coupled network dynamics to incorporate pairwise correlations between pulse-coupled nodes within the network, as well as fluctuations in network activity that arise as a consequence of network topology (ii) The search for an appropriate definition of entropy for pulse-coupled network systems that will serve as a unifying principle to both (a) extend the maximum entropy principle that has been successful in simplifying the dynamics associated with certain idealized pulsed-coupled network systems, and (b) characterize the nature of global fluctuations of network dynamics over realistic network topology.A development of a theoretical framework of organizing principles that can capture statistical behaviors of network dynamics over complex topologies is potentially transformative in understanding of general information transmission and processing over general network topologies. A successful implementation of theoretical methodologies proposed here will have strong impact on how we model large-scale, pulse-coupled network dynamics, in particular, neuronal network dynamics, and on how we theoretically investigate brain dynamics from a new coarse-grained perspective. This would be a first step towards undertaking the scientific challenge of addressing how structural connectivity underlies functional and effective connectivity in the brain. It is important to emphasize that the general theoretical issues addressed in this proposal will have ramifications in assisting the analysis and understanding of many other dynamics on complicated networks, such as chemical reaction cascades, genetic networks, traffic networks etc, in particular to systems neuroscience. The proposed work will provide postdocs and graduate students with exciting research projects in applied mathematics as well as in theoretical problems arising from systems neuroscience.
过去几十年积累的实验和理论证据表明,为了理解复杂信息处理系统(如大脑)研究中产生的网络动力学,必须首先理解节点之间的脉冲耦合相互作用的动力学后果。每个节点(如神经元)的动力学都是高度非线性的,底层网络拓扑结构绝不是同质的,最相关的网络现象在许多时空尺度上都表现出结构特征。为了推进对复杂信息处理系统研究中产生的脉冲耦合网络的理解,关键是要建立一个通用的概念框架,能够对复杂网络拓扑结构上的大规模脉冲耦合网络动态进行粗粒度的统计描述。当前的数学工具,例如来自统计力学的技术,不能容易地应用于这些脉冲耦合系统,因为这些技术所基于的大多数假设(例如,交互网络的平稳性、同质性等)根本就不存在。拟议研究的目的是通过以下方式为解决这些概念问题迈出第一步:(i)系统地扩展不相关的均匀脉冲耦合网络动力学的动力学理论公式,以纳入网络内脉冲耦合节点之间的成对相关性,以及作为网络拓扑的结果而出现的网络活动的波动(ii)对脉冲耦合网络系统的熵的适当定义的探索将作为统一的原则,以(a)扩展最大熵原则,该原则已成功地简化了与某些理想化的脉冲耦合网络系统相关联的动力学,以及(B)描述实际网络拓扑上网络动态的全局波动的性质。发展一种能够捕获复杂拓扑上网络动态的统计行为的组织原则的理论框架,对于理解一般网络拓扑上的一般信息传输和处理具有潜在的变革性。本文提出的理论方法的成功实现将对我们如何建模大规模脉冲耦合网络动力学,特别是神经元网络动力学,以及我们如何从新的粗粒度角度理论上研究大脑动力学产生强烈的影响。这将是迎接科学挑战的第一步,即解决结构连接如何成为大脑功能和有效连接的基础。重要的是要强调的是,在这个建议中解决的一般理论问题将有助于分析和理解复杂网络上的许多其他动力学,如化学反应级联,遗传网络,交通网络等,特别是系统神经科学。拟议的工作将提供博士后和研究生在应用数学以及系统神经科学所产生的理论问题令人兴奋的研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Cai其他文献

Increasing Pulse Intake Improves Diet Quality in Adults in the US (P18-114-19)
  • DOI:
    10.1093/cdn/nzz039.p18-114-19
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Diane Mitchell;Jeff Rumney;Jessie Campbell;David Cai;Julianne Curran;Christopher Marinangeli
  • 通讯作者:
    Christopher Marinangeli
A Faith‐ and Community‐Based Approach to Identifying the Individual at Risk for Head and Neck Cancer in an Inner City
基于信仰和社区的方法来识别内城头颈癌高危人群
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Carter;Ryan Winters;Rosa B. Lipin;Sara Lookabaugh;David Cai;P. Friedlander
  • 通讯作者:
    P. Friedlander
Coating M-CSF on plastic surface results in the generation of increased numbers of macrophages in vitro.
在塑料表面涂覆 M-CSF 会导致体外巨噬细胞数量增加。
  • DOI:
    10.1016/j.jim.2020.112788
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Sanathan Sadh;Stephanie Hajjar;A. Ariana;M. Phuong;David Cai;P. Thakker;S. Sad
  • 通讯作者:
    S. Sad

David Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Cai', 18)}}的其他基金

MSM: Collaborative Research: Cortical Processing across Multiple Time and Space Scales
MSM:协作研究:跨多个时间和空间尺度的皮层处理
  • 批准号:
    0506396
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Near-and-Far-from-Equilibrium Statistical Physics of Nonlinear Dispersive Waves
非线性色散波的近平衡和远平衡统计物理
  • 批准号:
    0507901
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical Modeling and Predictability of Nonlinear Dispersive Waves
非线性色散波的统计建模和可预测性
  • 批准号:
    0206679
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Efficient Monte Carlo Methods for Nonequilibrium Statistical Physics
非平衡统计物理的高效蒙特卡罗方法
  • 批准号:
    2012207
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mutual application of quantum physics and nonequilibrium statistical mechanics
量子物理与非平衡统计力学的相互应用
  • 批准号:
    22540407
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computing statistical physics study on nonequilibrium phenomena
非平衡现象的计算统计物理研究
  • 批准号:
    19340110
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Physics of Disordered and Nonequilibrium Systems
无序和非平衡系统的统计物理
  • 批准号:
    5392352
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Independent Junior Research Groups
Equilibrium and nonequilibrium statistical physics
平衡和非平衡统计物理
  • 批准号:
    8461-1997
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of glass transition in the energy landscape picture and nonequilibrium statistical physics
能量景观图中的玻璃化转变理论与非平衡统计物理
  • 批准号:
    13640389
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Equilibrium and nonequilibrium statistical physics
平衡和非平衡统计物理
  • 批准号:
    8461-1997
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Equilibrium and nonequilibrium statistical physics
平衡和非平衡统计物理
  • 批准号:
    8461-1997
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Equilibrium and nonequilibrium statistical physics
平衡和非平衡统计物理
  • 批准号:
    8461-1997
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Path Integration and Nonequilibrium Statistical Mechanics (Physics)
路径积分和非平衡统计力学(物理)主题
  • 批准号:
    8811106
  • 财政年份:
    1988
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了