Semiconductor Nanowires for Efficient Transport of Energy and Charge

用于高效能量和电荷传输的半导体纳米线

基本信息

  • 批准号:
    1012898
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY: A thorough experimental study to improve the photoluminescence efficiencies in quantum wires and related nanostructures is to be undertaken with the financial support from the Macromolecular, Supramolecular, and Nanochemistry Program in the Division of Chemistry at the National Science Foundation. Nanowires have potential applications in nanoelectronics, nanophotonics, and solar-energy conversion. There is also fundamental interest in 2D quantum confinement and the transport of excitons and charge carriers in quantum wires. Such applications and fundamental studies require that nanowires be well passivated to inhibit the loss of excitons and charge carriers to surface traps. Efficient performance of a nanowire or quantum-wire device requires that carriers not be disproportionately trapped and recombined at surface/interface sites. Photoluminescence efficiencies provide a measure of the quality of surface passivation and the scarcity of trap sites that induce nonradiative recombination. Unfortunately, the photoluminescence efficiencies in nanowires and quantum wires reported to date are poor. However, efficiencies of 30% and 7%, respectively, in CdSe quantum belts and CdTe quantum wires were recently achieved. Therefore, the problem of photoluminescence efficiency in quantum wires is surmountable. A range of successful strategies just emerging for quantum dots and rods have yet to be tried for quantum wires. The primary goal of the project is thus the synthetic achievement of quantum wires and related nanostructures having well-passivated surfaces, capable of the efficient transport of energy and charge.The specific goals of the proposed work are as follows.- Quantum belts of various compositions, lengths, and thicknesses will be prepared and studied.- Core-shell strategies, including core-shell-shell and gradient-shell strategies, in quantum wires will be explored.- Doped quantum wires will be prepared to investigate band-gap-narrowing, and excitonic magnetic polarons in dilute magnetic semiconductor quantum wires.- A wide variety of organic and inorganic surface-passivating agents, including metalloorganic compounds (Lewis acids) will be surveyed to passivate hole traps.NON-TECHNICAL SUMMARY: There is considerable interest in incorporating semiconductor nanocrystals into next-generation devices for solar-energy conversion. Solar cells constructed from semiconductor nanostructures are expected to be fabricated more economically than the traditional silicon-based devices, and to have other application advantages. A solar cell functions by capturing light energy and converting it to energetic positive and negative electric charges, which are then separated and transported to opposite electrodes in the cell. This provides electrical energy for charging a battery, or operating an electrical appliance. The critical steps are thus the efficient separation of the positive and negative charges, and the efficient transport of those charges to the electrodes. Semiconductor nanowires are targeted for use in new solar-cell designs because they can in principle transport energy and charge over long distances, the entire lengths of the nanowires, which can span the inter-electrode separations. However, efficient transport will require that charges not be trapped at defect sites in the wires. With financial support from Macromolecular, Supramolecular, and Nanochemistry Program in the Division of Chemistry at the National Science Foundation, this project will identify and eliminate those trap-site defects, enabling the application of semiconductor nanowires in solar cells, nanoelectronics, and in small-scale devices for light detection and generation. The broader impacts include technological advances to assist in addressing the nation's energy challenge. The PI also has an excellent record of training women and members of underrepresented groups, thereby increasing the diversity of the nation's technological work force. The PI is co-leading an effort at Washington University to increase the retention of undergraduate women in science, technology, engineering, and math (STEM) fields.
技术摘要:在美国国家科学基金会化学部高分子、超分子和纳米化学项目的财政支持下,将开展一项旨在提高量子线和相关纳米结构的光致发光效率的彻底实验研究。 纳米线在纳米电子学、纳米光子学和太阳能转换方面具有潜在的应用。 人们对二维量子限制以及量子线中激子和电荷载流子的传输也产生了根本的兴趣。 此类应用和基础研究需要对纳米线进行良好钝化,以抑制激子和电荷载流子损失到表面陷阱。 纳米线或量子线器件的高效性能要求载流子不会在表面/界面位点不成比例地被捕获和重组。 光致发光效率提供了表面钝化质量和诱导非辐射复合的陷阱位点稀缺性的衡量标准。 不幸的是,迄今为止报道的纳米线和量子线的光致发光效率很差。 然而,最近 CdSe 量子带和 CdTe 量子线的效率分别达到了 30% 和 7%。 因此,量子线的光致发光效率问题是可以克服的。 一系列针对量子点和棒的成功策略尚未在量子线中进行尝试。 因此,该项目的主要目标是合成具有良好钝化表面的量子线和相关纳米结构,能够有效地传输能量和电荷。该工作的具体目标如下。-将制备和研究各种成分、长度和厚度的量子带。-将探索量子线中的核-壳策略,包括核-壳-壳和梯度-壳策略。- 将制备掺杂量子线来研究稀磁性半导体量子线中的带隙变窄和激子磁极化子。-将研究各种有机和无机表面钝化剂,包括金属有机化合物(路易斯酸)以钝化空穴陷阱。非技术摘要:人们对将半导体纳米晶体纳入其中具有相当大的兴趣 下一代太阳能转换设备。 由半导体纳米结构构建的太阳能电池预计比传统的硅基器件更经济地制造,并且具有其他应用优势。 太阳能电池的工作原理是捕获光能并将其转换为高能正电荷和负电荷,然后将其分离并传输到电池中相对的电极。 这提供了用于给电池充电或操作电器的电能。 因此,关键步骤是有效分离正电荷和负电荷,以及将这些电荷有效传输到电极。 半导体纳米线的目标是用于新的太阳能电池设计,因为它们原则上可以在纳米线的整个长度上长距离传输能量和电荷,可以跨越电极间的间距。 然而,有效的传输需要电荷不被捕获在导线的缺陷位置。 在美国国家科学基金会化学部高分子、超分子和纳米化学项目的资助下,该项目将识别并消除这些陷阱位点缺陷,从而使半导体纳米线在太阳能电池、纳米电子学以及用于光检测和产生的小型设备中得到应用。 更广泛的影响包括帮助解决国家能源挑战的技术进步。 PI 在培训女性和代表性不足群体成员方面也有着出色的记录,从而增加了国家技术劳动力的多样性。 该 PI 与华盛顿大学共同领导一项旨在提高科学、技术、工程和数学 (STEM) 领域本科女性的保留率的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Buhro其他文献

William Buhro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Buhro', 18)}}的其他基金

Magic-size nanoclusters as low-temperature precursors to nanocrystal and bulk semiconductor films
神奇大小的纳米团簇作为纳米晶体和块状半导体薄膜的低温前体
  • 批准号:
    1607862
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Semiconductor Belts, Sheets, and Wires Having Idealized Optical and Transport Properties
具有理想光学和传输性能的半导体带、片材和线材
  • 批准号:
    1306507
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
The Development of Microelectrode Arrays as Bioanalytical Tools
微电极阵列作为生物分析工具的发展
  • 批准号:
    1262176
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Intramolecular Anodic Olefin Coupling Reactions
分子内阳极烯烃偶联反应
  • 批准号:
    1151121
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Influence of Geometric Dimensionality on Quantum Confinement: Semiconductor Quantum Wires, Rods, and Shells
几何维度对量子限制的影响:半导体量子线、棒和壳
  • 批准号:
    0518427
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
NIRT: Electrical and Mechanical Properties of Boron and Metal-boride Nanowires, and Nanoscale Devices Built from them
NIRT:硼和金属硼化物纳米线以及由它们构建的纳米级器件的电气和机械特性
  • 批准号:
    0210120
  • 财政年份:
    2002
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Solution-liquid-solid Growth of Quantum Wires: Phase-separated vs. Homogeneous-alloy Structures
量子线的溶液-液-固生长:相分离与均质合金结构
  • 批准号:
    0092735
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Solution-Liquid-Solid Growth of Inorganic Materials
无机材料的溶液-液体-固体生长
  • 批准号:
    9709104
  • 财政年份:
    1997
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Research Experiences for Undergraduates in Chemistry at Washington University, St. Louis
圣路易斯华盛顿大学化学专业本科生的研究经验
  • 批准号:
    9200708
  • 财政年份:
    1992
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award/Organometallic Routes to New Materials
总统青年研究员奖/有机金属新材料之路
  • 批准号:
    9158369
  • 财政年份:
    1991
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似海外基金

Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
  • 批准号:
    DE240100179
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Early Career Researcher Award
NSF-ANR: Cytochrome nanowires: secretion, assembly and function in ultrafast electron transfer by microbial biofilms
NSF-ANR:细胞色素纳米线:微生物生物膜超快电子转移的分泌、组装和功能
  • 批准号:
    2210473
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Innovative Chemical Sensor Based on Interface State Control of Oxide Semiconductor Nanowires with PN Junction
基于PN结氧化物半导体纳米线界面状态控制的创新化学传感器
  • 批准号:
    23K13360
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preparation of metal nanowires with sub-nm diameter transferred from the surface structure of layered silicate
层状硅酸盐表面结构转移亚纳米金属纳米线的制备
  • 批准号:
    22KJ2946
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Effect of Electrostatic-Field-Induced Electron Transfer on Photomethanation with Semiconductor Nanowires
静电场诱导电子转移对半导体纳米线光甲烷化的影响
  • 批准号:
    23K13631
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Chemical Sensors Based Upon Metal Nanowires and Nanogaps in Metal Nanowires Transduced Using Impedance
基于金属纳米线和使用阻抗转换的金属纳米线中的纳米间隙的化学传感器
  • 批准号:
    2201042
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Laser joining and assembly of nanowires: processing, structure, properties and performance
纳米线的激光连接和组装:加工、结构、特性和性能
  • 批准号:
    RGPIN-2018-03980
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Photocatalytic Nanowires for Solar Fuel Applications
用于太阳能燃料应用的光催化纳米线
  • 批准号:
    545745-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Postdoctoral Fellowships
Optimization of Silver Nanowires Synthesis and Purification Processes for Commercially Viable Pilot Scale Production
银纳米线合成和纯化工艺的优化以实现商业上可行的中试规模生产
  • 批准号:
    576946-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Alliance Grants
Structure and Function of Bacterial Nanowires
细菌纳米线的结构和功能
  • 批准号:
    RGPAS-2020-00011
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了