AF: Smal: k-Greedy Drawing of Graphs and Their Applications

AF:Smal:k-贪心图绘制及其应用

基本信息

  • 批准号:
    1017366
  • 负责人:
  • 金额:
    $ 10.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

Routing is one of the most important algorithmic problems in networking. Traditional routing is done by constructing routing tables via routing protocols. Such a solution is space inefficient and it requires considerable setup overhead, which makes it infeasible for some networks such as wireless sensor networks. Recently, geometric routing has been proposed as an alternative approach. Geometric routing often uses virtual coordinates of the nodes to compute routing paths. The virtual coordinates of the vertices are computed by running graph drawing algorithms on them. The simplest geometric routing is greedy routing, in which a vertex simply forwards messages to a neighbor that is closer to the destination. The first problem for greedy routing is its theoretical applicability. In order for greedy routing to always succeed, for every pair of vertices u and v in the network, there must be a distance-decreasing path from u to v. Unfortunately, not every graph can be drawn so that distance-decreasing paths exist between every pair of vertices. The second problem for greedy routing is its practical feasibility: the virtual coordinates in a greedy drawing have to be succinct. The combination of the two problems is a significant hurdle for the applicability of greedy routing. The aim of this project is to tackle these greedy routing problems by introducing and studying a new notion of graph drawing: k-geometric embedding, in which each node of a network can be mapped into up to k virtual locations in the target metric space. For two nodes u and v in the network, the smallest distance among all their virtual locations is defined as the distance of these two nodes. In particular, this project will study k-greedy drawing, which is defined to be a k-geometric embedding in which distance-decreasing paths always exist.The intellectual merits of this research include the following: (i) the new concepts will open a new area of graph drawing and strengthen the connection between graph drawing and network routing; (ii) the theory developed will make greedy routing feasible for more kinds of networks. Consequently, greedy routing may become a truly practical alternative. The broader impacts of this research include the following: (i) the results obtained from this research will have impact on graph theory, graph drawing, and geometric routing, especially greedy routing; (ii) the research results will be incorporated into computer science education.
路由是网络中最重要的算法问题之一。传统的路由是通过路由协议构建路由表来完成的。这样的解决方案是空间效率低的,它需要相当大的设置开销,这使得它不可行的一些网络,如无线传感器网络。最近,几何布线已被提出作为一种替代方法。几何布线通常使用节点的虚拟坐标来计算布线路径。通过在顶点上运行图形绘制算法来计算顶点的虚拟坐标。最简单的几何路由是贪婪路由,其中顶点简单地将消息转发到更接近目的地的邻居。贪婪路由的第一个问题是它的理论适用性。为了使贪婪路由总是成功,对于网络中的每一对顶点u和v,必须有一条从u到v的距离递减路径。不幸的是,不是每个图都能画出每一对顶点之间都存在距离递减路径。贪婪布线的第二个问题是它的实际可行性:贪婪绘图中的虚拟坐标必须简洁。这两个问题的结合是贪婪路由的适用性的一个重大障碍。该项目的目的是通过引入和研究一种新的图形绘制概念来解决这些贪婪路由问题:k-几何嵌入,其中网络的每个节点可以映射到目标度量空间中的k个虚拟位置。对于网络中的两个节点u和v,它们的所有虚拟位置之间的最小距离被定义为这两个节点的距离。特别是,本项目将研究k-greedy drawing,它被定义为一个k-几何嵌入,其中距离减少的路径总是存在的。这项研究的知识价值包括:(i)新的概念将打开一个新的领域的图形绘制和加强之间的联系图形绘制和网络路由;(ii)开发的理论将使贪婪路由可行的更多类型的网络。因此,贪婪路由可能成为真正实用的替代方案。这项研究的更广泛的影响包括:(i)从这项研究中获得的结果将对图论,图形绘制和几何路由,特别是贪婪路由产生影响;(ii)研究成果将被纳入计算机科学教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huaming Zhang其他文献

Constructing core-shell structured Mott–Schottky heterojunction towards remarkable hydrogen production from water/seawater splitting
构建核壳结构的莫特-肖特基异质结以实现显著的水/海水分解制氢
  • DOI:
    10.1016/j.jallcom.2024.175952
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Huaming Zhang;Rong Li;Zhihan Huang;Muhammad Humayun;Xuefei Xu;Junhong Duan;Mohamed Bououdina;Yasser A. Attia;Gülfeza Kardas;Chundong Wang
  • 通讯作者:
    Chundong Wang
On Representation of Planar Graphs by Segments
关于平面图的分段表示
  • DOI:
    10.1007/978-3-540-68880-8_29
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Sadasivam;Huaming Zhang
  • 通讯作者:
    Huaming Zhang
Constructing nanoporous crystalline/amorphous NiFesub2/subOsub4/sub/NiO electrocatalyst for high efficiency OER/UOR
构建用于高效析氧反应/尿素氧化反应的纳米多孔晶体/非晶 NiFe₂O₄/NiO 电催化剂
  • DOI:
    10.1016/j.jallcom.2022.168206
  • 发表时间:
    2023-03-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Linchao Yao;Huaming Zhang;Muhammad Humayun;Yanjun Fu;Xuefei Xu;Cuidi Feng;Chundong Wang
  • 通讯作者:
    Chundong Wang
Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)sub3/sub/NiTe coaxial nanorod array electrode
  • DOI:
    10.1016/j.apcatb.2022.121088
  • 发表时间:
    2022-05-15
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Huachuan Sun;Linfeng Li;Muhammad Humayun;Huaming Zhang;Yanan Bo;Xiang Ao;Xuefei Xu;Kun Chen;Kostya (Ken) Ostrikov;Kaifu Huo;Wenjun Zhang;Chundong Wang;Yujie Xiong
  • 通讯作者:
    Yujie Xiong
Planar Polyline Drawings via Graph Transformations
  • DOI:
    10.1007/s00453-008-9215-x
  • 发表时间:
    2008-08-15
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Huaming Zhang
  • 通讯作者:
    Huaming Zhang

Huaming Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huaming Zhang', 18)}}的其他基金

EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复​​已删除的信息
  • 批准号:
    2317563
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Graph Orientation Structures and Their Applications
图的定向结构及其应用
  • 批准号:
    0728830
  • 财政年份:
    2008
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: How to get SMAL: Studying island dwarfism to find Shared Molecular mechanisms Across Life history traits
合作研究:如何获得 SMAL:研究岛屿侏儒症以寻找跨生命史特征的共享分子机制
  • 批准号:
    2222086
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: How to get SMAL: Studying island dwarfism to find Shared Molecular mechanisms Across Life history traits
合作研究:如何获得 SMAL:研究岛屿侏儒症以寻找跨生命史特征的共享分子机制
  • 批准号:
    2222087
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: How to get SMAL: Studying island dwarfism to find Shared Molecular mechanisms Across Life history traits
合作研究:如何获得 SMAL:研究岛屿侏儒症以寻找跨生命史特征的共享分子机制
  • 批准号:
    2222088
  • 财政年份:
    2023
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
  • 批准号:
    2245055
  • 财政年份:
    2022
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
  • 批准号:
    2007386
  • 财政年份:
    2020
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Standard Grant
Inhibition of Estrogen Receptor-DNA binding with Pyrrole-Imidazole Polyamide Smal
吡咯-咪唑聚酰胺 Smal 对雌激素受体 DNA 结合的抑制
  • 批准号:
    8452431
  • 财政年份:
    2013
  • 资助金额:
    $ 10.47万
  • 项目类别:
Inhibition of Estrogen Receptor-DNA binding with Pyrrole-Imidazole Polyamide Smal
吡咯-咪唑聚酰胺 Smal 对雌激素受体 DNA 结合的抑制
  • 批准号:
    8605805
  • 财政年份:
    2013
  • 资助金额:
    $ 10.47万
  • 项目类别:
Identification of smal molecules and their targets that modulate embryonic stem cell self-renewal and differentiation
鉴定调节胚胎干细胞自我更新和分化的小分子及其靶标
  • 批准号:
    361680-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Postgraduate Scholarships - Master's
Identification of smal molecules and their targets that modulate embryonic stem cell self-renewal and differentiation
鉴定调节胚胎干细胞自我更新和分化的小分子及其靶标
  • 批准号:
    361680-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 10.47万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了