EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复已删除的信息
基本信息
- 批准号:2317563
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the current data era, massive amount of data is generated at an unprecedented speed. The total amount of data created, and used globally in the year 2022 was estimated to be 97 zettabytes and projected to grow to 181 zettabytes by the year 2025. The extremely large data size poses enormous challenges to data operations and in particular to NAND flash memory deletion. Due to the unique architecture of NAND array, current NAND flash storage systems cannot utilize the standard overwrite-based erasure techniques but instead use a resource-light deletion operation, such as all-zero scrubbing, which could become vulnerable for data leakage. The deleted data can still be partially recovered by carefully analyzing the analog reading of the memory bits. Addressing the vulnerability of flash memory deletion requires a deeper understanding on how an adversary could exploit the analog reading of a flash memory to reconstruct the original deleted information. To achieve this goal, this research studies on how an adversary can use machine learning techniques to recover deleted information from flash storage. The project’s novelties are to apply machine learning techniques to validate the efficacy of reconstructing original data from scrubbed flash memory and to evaluate the susceptibility of various data types to adversary attacks. The project's broader significance and importance are: The research findings will led to more trusted data cleaning methods deemed secure and irrecoverable after scrubbing. The flash memory manufacturers can directly benefit from such findings and secure their memory scrubbing processes. A direct outcome of this project will be the training of two graduate students with research experiences in cybersecurity and machine learning.By applying analog reading techniques to classify deleted bits as strong or weak zeros, it was shown that a deleted image in flash memory can be restored to a recognizable level. An adversary can easily use machine learning techniques to reconstruct deleted information from flash memory. The feasibility of reconstruction is greatly influenced by the detection thresholds and types of data used, as they exhibit varying degrees and types of continuity that may determine the success of ML models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前的数据时代,海量数据以前所未有的速度产生。到2022年,全球创建和使用的数据总量估计为97泽字节,预计到2025年将增长到181泽字节。巨大的数据量给数据操作带来了巨大的挑战,特别是对NAND闪存的删除。由于NAND阵列的独特结构,目前的NAND闪存存储系统不能利用标准的基于覆盖的擦除技术,而是使用资源轻的删除操作,如全零擦除,这可能会导致数据泄露。通过仔细分析存储器位的模拟读数,删除的数据仍然可以部分恢复。解决闪存删除的漏洞需要更深入地了解对手如何利用闪存的模拟读取来重建原始删除的信息。为了实现这一目标,本研究研究了攻击者如何使用机器学习技术从闪存中恢复已删除的信息。该项目的新颖之处在于应用机器学习技术来验证从擦除的闪存中重建原始数据的有效性,并评估各种数据类型对对手攻击的敏感性。该项目更广泛的意义和重要性在于:研究结果将导致更多可信的数据清洗方法被认为是安全的,并且在清洗后不可恢复。闪存制造商可以直接从这些发现中受益,并确保他们的内存清洗过程。该项目的一个直接成果将是培训两名具有网络安全和机器学习研究经验的研究生。通过应用模拟读取技术将删除的位分类为强零或弱零,表明在闪存中删除的图像可以恢复到可识别的水平。对手可以很容易地使用机器学习技术从闪存中重建已删除的信息。重建的可行性在很大程度上受到检测阈值和使用的数据类型的影响,因为它们表现出不同程度和类型的连续性,这可能决定ML模型的成功。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huaming Zhang其他文献
Constructing core-shell structured Mott–Schottky heterojunction towards remarkable hydrogen production from water/seawater splitting
构建核壳结构的莫特-肖特基异质结以实现显著的水/海水分解制氢
- DOI:
10.1016/j.jallcom.2024.175952 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:6.300
- 作者:
Huaming Zhang;Rong Li;Zhihan Huang;Muhammad Humayun;Xuefei Xu;Junhong Duan;Mohamed Bououdina;Yasser A. Attia;Gülfeza Kardas;Chundong Wang - 通讯作者:
Chundong Wang
On Representation of Planar Graphs by Segments
关于平面图的分段表示
- DOI:
10.1007/978-3-540-68880-8_29 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
S. Sadasivam;Huaming Zhang - 通讯作者:
Huaming Zhang
Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)sub3/sub/NiTe coaxial nanorod array electrode
- DOI:
10.1016/j.apcatb.2022.121088 - 发表时间:
2022-05-15 - 期刊:
- 影响因子:21.100
- 作者:
Huachuan Sun;Linfeng Li;Muhammad Humayun;Huaming Zhang;Yanan Bo;Xiang Ao;Xuefei Xu;Kun Chen;Kostya (Ken) Ostrikov;Kaifu Huo;Wenjun Zhang;Chundong Wang;Yujie Xiong - 通讯作者:
Yujie Xiong
Constructing nanoporous crystalline/amorphous NiFesub2/subOsub4/sub/NiO electrocatalyst for high efficiency OER/UOR
构建用于高效析氧反应/尿素氧化反应的纳米多孔晶体/非晶 NiFe₂O₄/NiO 电催化剂
- DOI:
10.1016/j.jallcom.2022.168206 - 发表时间:
2023-03-05 - 期刊:
- 影响因子:6.300
- 作者:
Linchao Yao;Huaming Zhang;Muhammad Humayun;Yanjun Fu;Xuefei Xu;Cuidi Feng;Chundong Wang - 通讯作者:
Chundong Wang
Planar Polyline Drawings via Graph Transformations
- DOI:
10.1007/s00453-008-9215-x - 发表时间:
2008-08-15 - 期刊:
- 影响因子:0.700
- 作者:
Huaming Zhang - 通讯作者:
Huaming Zhang
Huaming Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huaming Zhang', 18)}}的其他基金
AF: Smal: k-Greedy Drawing of Graphs and Their Applications
AF:Smal:k-贪心图绘制及其应用
- 批准号:
1017366 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Graph Orientation Structures and Their Applications
图的定向结构及其应用
- 批准号:
0728830 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
- 批准号:
2348130 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
- 批准号:
2348177 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant