Quantum Nonequilibrium Dynamics
量子非平衡动力学
基本信息
- 批准号:1019197
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit: The central theme of this project is the memory of the initial state in quantum systems in between order and chaos. While this question is immensely complicated in classical systems, it turns out to be possible to identify a limited class of quantum systems for which relatively simple quantitative predictions can be made. This project is devoted to worked examples. The first of them is two atoms in a guide. The second consists of five two-dimensional strongly interacting atoms on a lattice. The third is a two-component mixture of atoms in two coupled traps. In all three cases, the group will be testing a simple formula that relates the values of observables after relaxation from an initial excited state to their initial values. Broader impact: Interdisciplinary by nature, the project lies on the interface between Atomic,Many-Body, and Mathematical Physics, Nonlinear Science, and Complex Systems. It will provide analytical and numerical experience for undergraduate and graduate students at the University of Massachusetts Boston. The PI will also work on an undergraduate-oriented book [Quantum Mechanics by order of magnitude, World Scientific, c. 2010] devoted to qualitative methods, a set of skills used by many and taught nowhere.
智力价值:这个项目的中心主题是在有序和混沌之间的量子系统的初始状态的记忆。虽然这个问题在经典系统中是非常复杂的,但事实证明,有可能识别出一类有限的量子系统,可以对其进行相对简单的定量预测。本项目致力于工作实例。第一个是两个原子在一个引导。第二种由晶格上的五个二维强相互作用原子组成。第三种是原子在两个耦合阱中的双组分混合物。在这三种情况下,该小组将测试一个简单的公式,该公式将从初始激发态弛豫后的可观测值与它们的初始值联系起来。更广泛的影响:跨学科的性质,该项目是原子,多体,数学物理,非线性科学和复杂系统之间的接口。它将为马萨诸塞大学波士顿分校的本科生和研究生提供分析和数值经验。PI还将编写一本面向本科生的书[量子力学的数量级,世界科学,c. 2010],致力于定性方法,这是一套被许多人使用却没有教授的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Olchanyi其他文献
Maxim Olchanyi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Olchanyi', 18)}}的其他基金
Number-Theory-Inspired Effects in Cold Atoms
冷原子中受数论启发的效应
- 批准号:
2309271 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Ways to Mitigate Decoherence in Solitonic Schroedinger Cats
减轻孤立薛定谔猫退相干的方法
- 批准号:
1912542 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Joint NSF-BSF Proposal: Nonlinear Dynamics with Gross-Pitaevskii Breathers
合作研究:NSF-BSF 联合提案:采用 Gross-Pitaevskii 呼吸器的非线性动力学
- 批准号:
1607221 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Rare and Exotic Nonlinear Effects in Cold Atomic Gases
冷原子气体中罕见且奇异的非线性效应
- 批准号:
1402249 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Empirical Manifestations of Integrability in Cold Quantum Gases
冷量子气体可积性的经验表现
- 批准号:
0754942 - 财政年份:2007
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Empirical Manifestations of Integrability in Cold Quantum Gases
冷量子气体可积性的经验表现
- 批准号:
0621703 - 财政年份:2006
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
International School on "Quantum Gases in Low Dimensions"
国际学校“低维量子气体”
- 批准号:
0244810 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Nonperturbative Methods in the Theory of Dilute Bose Gases
稀玻色气体理论中的非微扰方法
- 批准号:
0301052 - 财政年份:2003
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Atoms in Tight Traps: Theory of Scattering in Restricted Geometries and Applications
紧密陷阱中的原子:受限几何结构中的散射理论及其应用
- 批准号:
0070333 - 财政年份:2000
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
- 批准号:
2143635 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
- 批准号:
2207777 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
CAREER: Controlled nonequilibrium dynamics of quantum matter and machines
职业:量子物质和机器的受控非平衡动力学
- 批准号:
1945395 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2037996 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2038028 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Topology in Nonequilibrium Quantum Many-Body Dynamics
非平衡量子多体动力学中的拓扑
- 批准号:
419241108 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Research Grants
Study of nonequilibrium dynamics of integrable quantum systems in association with the relaxation of isolated quantum systems and the dynamical quantum phase transition of the many-body localization
可积量子系统的非平衡动力学研究与孤立量子系统的弛豫和多体局域化的动态量子相变相关
- 批准号:
18K03450 - 财政年份:2018
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical study on the nonequilibrium dynamics and the quantum transport phenomena of topological magnetic textures
拓扑磁织构非平衡动力学和量子输运现象的理论研究
- 批准号:
17H02924 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel nonequilibrium dynamics of quantum degenerate gas exploited by spatiotemporal control of scattering length
通过散射长度的时空控制开发量子简并气体的新型非平衡动力学
- 批准号:
17H02938 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonequilibrium charge dynamics in quantum Hall edge channels
量子霍尔边缘通道中的非平衡电荷动力学
- 批准号:
26247051 - 财政年份:2014
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (A)