EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
基本信息
- 批准号:2037996
- 负责人:
- 金额:$ 16.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research on the studies of dynamics of fractional quantum Hall states using a quantum computer. Recently, we have witnessed extensive development in building quantum computing devices. These advances have allowed efficient calculations of the properties of molecular systems of a few electrons, beyond the capabilities of classical computers. On the other hand, interactions among macroscopically large numbers of electrons lead to the emergence of novel states of matter such the fractional quantum Hall effect, which arises when electrons confined to two dimensions are placed in a strong magnetic field. Interestingly, it has been shown recently that there are connections between fractional quantum Hall states and quantum gravity. The understanding of these novel phenomena requires study of the quantum dynamics of many-particle states when driven out of equilibrium. Experimental and numerical investigations of such states are particularly challenging, motivating a completely new approach. The PIs will develop quantum algorithms to simulate and study these concepts using near-term quantum computing devices. This project will create a new table-top setup to explore questions ranging from quantum dynamics to gravity.The educational component of the activity will provide opportunities for undergraduate and graduate students, particularly from underrepresented groups, to learn about quantum computing and gain hands-on computational experience with quantum circuit design using Google's open-source packages.TECHNICAL SUMMARYThis award supports theoretical research on the nonequilibrium quench dynamics and the excitations of fractional quantum Hall states using superconducting qubits. Recent advances in quantum computing devices have motivated using them to simulate quantum states. Given the long-standing challenges in studying correlated many-electron phases, it is compelling to explore the possibility of using quantum computers to investigate these states. This project examines fractional quantum Hall states by developing efficient quantum algorithms that can be implemented on near-term quantum computers.Fractional quantum Hall states are significant examples of quantum phases, where topological order arises from strong electron-electron interactions. The understanding of fractional Hall states is primarily based on insightful trial wave functions, conformal field theory methods, exact diagonalization, and the density-matrix renormalization group. Despite extensive efforts, very little is known about the many-body excitation spectrum and the far-from-equilibrium dynamics of these systems. Notably, there has been a new understanding of novel geometric properties of fractional Hall states, which relates them to concepts in gravity. Advances in quantum computing and quantum simulations provide a new avenue to study fractional Hall phases out of equilibrium. In this research, the PIs pursue two particular directions:1- Quantum algorithms to generate dynamical quantum braiding and observe its signatures in fractional Hall phases. Even in natural quantum Hall systems, controlled generation of topological excitations and observation of quantum braiding have proved quite challenging. This project opens the door to using quantum computers as an experimental platform for realizing quantum braiding.2- Generating and observing signatures of geometric high-energy excitations, such as the putative emergent graviton in fractional quantum Hall states. To this end, the research utilizes the simulation of nonequilibrium geometric quenches of fractional Hall states on quantum computers.The PIs will use the network available at City College to involve high-school, undergraduate, and graduate students from underrepresented groups in the efforts to develop quantum algorithms. The PIs engage undergraduate students in this research, allowing them to gain authentic experience and independent research credit toward graduation. In particular, both PIs will use publicly available resources from Google AI lab to train the students in using software packages to design quantum algorithms and visualize them in terms of quantum gates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持使用量子计算机研究分数量子霍尔态动力学的理论研究。最近,我们见证了在构建量子计算设备方面的广泛发展。这些进展使人们能够高效地计算几个电子的分子体系的性质,这超出了经典计算机的能力。另一方面,宏观上大量电子之间的相互作用导致了新的物质状态的出现,如分数量子霍尔效应,当限制在两个维度的电子被置于强磁场中时,就会产生分数量子霍尔效应。有趣的是,最近的研究表明分数量子霍尔态和量子引力之间存在联系。要理解这些新现象,就需要研究多粒子态在脱离平衡时的量子动力学。对这种状态的实验和数值研究尤其具有挑战性,促使人们采取一种全新的方法。PI将开发量子算法,使用近期的量子计算设备来模拟和研究这些概念。这个项目将创建一个新的桌面设置来探索从量子动力学到引力的各种问题。该活动的教育部分将为本科生和研究生提供机会,特别是来自未被充分代表的群体,学习量子计算,并获得使用谷歌的开放源代码包进行量子电路设计的实践计算经验。技术总结该奖项支持使用超导量子比特的非平衡失超动力学和分数量子霍尔态激发的理论研究。量子计算设备的最新进展促使人们使用它们来模拟量子态。考虑到研究关联多电子相的长期挑战,探索使用量子计算机研究这些态的可能性是迫在眉睫的。这个项目通过开发可以在近期量子计算机上实现的高效量子算法来研究分数量子霍尔态。分数量子霍尔态是量子相的重要例子,其中拓扑有序产生于强烈的电子-电子相互作用。分数霍尔态的理解主要基于有洞察力的试探波函数、共形场理论方法、精确对角化和密度矩阵重整化群。尽管进行了广泛的努力,但对这些系统的多体激发谱和远离平衡的动力学知之甚少。值得注意的是,对分数霍尔态的新的几何性质有了新的理解,这将它们与引力中的概念联系在一起。量子计算和量子模拟的进展为研究非平衡分数霍尔相提供了新的途径。在这项研究中,PI追求两个特定的方向:1-量子算法产生动态量子编织并观察其分数霍尔相的特征。即使在自然的量子霍尔系统中,拓扑激发的受控产生和量子编织的观察也被证明是相当具有挑战性的。该项目为使用量子计算机作为实现量子编织的实验平台打开了大门2-产生和观察几何高能激发的特征,例如假设的分数量子霍尔态中的浮现引力子。为此,这项研究利用了在量子计算机上模拟分数霍尔态的非平衡几何猝灭。PI将利用城市学院可用的网络,让来自代表性不足群体的高中生、本科生和研究生参与开发量子算法。PI让本科生参与这项研究,使他们在毕业前获得真实的经验和独立的研究学分。特别是,这两个PI将使用来自Google AI实验室的公开可用资源来培训学生使用软件包设计量子算法,并将其可视化为量子门。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Braiding fractional quantum Hall quasiholes on a superconducting quantum processor
在超导量子处理器上编织分数量子霍尔准空穴
- DOI:10.1103/physrevb.108.064303
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Kirmani, Ammar;Wang, Derek S.;Ghaemi, Pouyan;Rahmani, Armin
- 通讯作者:Rahmani, Armin
Probing Geometric Excitations of Fractional Quantum Hall States on Quantum Computers
探测量子计算机上分数量子霍尔态的几何激发
- DOI:10.1103/physrevlett.129.056801
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Kirmani, Ammar;Bull, Kieran;Hou, Chang-Yu;Saravanan, Vedika;Saeed, Samah Mohamed;Papić, Zlatko;Rahmani, Armin;Ghaemi, Pouyan
- 通讯作者:Ghaemi, Pouyan
Anomalous Shiba states in topological iron-based superconductors
- DOI:10.1103/physrevb.106.l201107
- 发表时间:2022-07
- 期刊:
- 影响因子:3.7
- 作者:A. Ghazaryan;A. Kirmani;R. Fernandes;Pouyan Ghaemi
- 通讯作者:A. Ghazaryan;A. Kirmani;R. Fernandes;Pouyan Ghaemi
Creating and Manipulating a Laughlin-Type ν=1/3 Fractional Quantum Hall State on a Quantum Computer with Linear Depth Circuits
在具有线性深度电路的量子计算机上创建和操纵 Laughlin 型 δ=1/3 分数量子霍尔态
- DOI:10.1103/prxquantum.1.020309
- 发表时间:2020
- 期刊:
- 影响因子:9.7
- 作者:Rahmani, Armin;Sung, Kevin J.;Putterman, Harald;Roushan, Pedram;Ghaemi, Pouyan;Jiang, Zhang
- 通讯作者:Jiang, Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pouyan Ghaemi其他文献
Evidence for mixed phases and percolation at the metal-insulator transition in two dimensions
二维金属-绝缘体转变时混合相和渗透的证据
- DOI:
10.1103/physrevb.99.155302 - 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Shiqi Li;Qing Zhang;Pouyan Ghaemi;M. Sarachik - 通讯作者:
M. Sarachik
Effect of Impurities on the Josephson Current through Helical Metals: Exploiting a Neutrino Paradigm.
杂质对螺旋金属约瑟夫森电流的影响:利用中微子范式。
- DOI:
10.1103/physrevlett.116.037001 - 发表时间:
2015 - 期刊:
- 影响因子:8.6
- 作者:
Pouyan Ghaemi;V. P. Nair - 通讯作者:
V. P. Nair
N ov 2 01 6 Positive Quantum Magnetoresistance in Tilted Magnetic Field
N ov 2 01 6 倾斜磁场中的正量子磁阻
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
W. Mayer;A. Ghazaryan;Pouyan Ghaemi;S. Vitkalov - 通讯作者:
S. Vitkalov
Optical control over bulk excitations in fractional quantum Hall systems
分数量子霍尔系统中体激发的光学控制
- DOI:
10.1103/physrevb.98.155124 - 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
T. Grass;M. Gullans;P. Bienias;Guanyu Zhu;A. Ghazaryan;Pouyan Ghaemi;M. Hafezi - 通讯作者:
M. Hafezi
Positive quantum magnetoresistance in tilted magnetic field
倾斜磁场中的正量子磁阻
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
W. Mayer;A. Ghazaryan;Pouyan Ghaemi;S. Vitkalov;A. Bykov - 通讯作者:
A. Bykov
Pouyan Ghaemi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pouyan Ghaemi', 18)}}的其他基金
相似国自然基金
基于细菌接触损伤与应激诱导的QAC/PVDF膜抗生物污染机制与调控
- 批准号:51808395
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2337930 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Quantum Algorithms for Correlated Electron-Phonon System
EAGER-QAC-QSA:相关电子声子系统的量子算法
- 批准号:
2038011 - 财政年份:2021
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER‐QAC‐QSA: Quantum Chemistry with Mean-field Cost from Semidefinite Programming on Quantum Computing Devices
EAGER – QAC – QSA:量子计算设备上半定编程的具有平均场成本的量子化学
- 批准号:
2035876 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational quantum algorithms for transcorrelated electronic-structure Hamiltonians
EAGER-QAC-QSA:互相关电子结构哈密顿量的变分量子算法
- 批准号:
2037832 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Bifurcation-Enabled Efficient Preparation of Many-body Ground States
EAGER-QAC-QSA:分叉有效制备多体基态
- 批准号:
2037987 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Resource Reduction in Quantum Computational Chemistry Mapping by Optimizing Orbital Basis Sets
EAGER:QAC-QSA:通过优化轨道基集减少量子计算化学绘图中的资源
- 批准号:
2037263 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: Variational Quantum Algorithms for Nonequilibrium Quantum Many-Body Systems
EAGER-QAC-QSA:非平衡量子多体系统的变分量子算法
- 批准号:
2038010 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: Hamiltonian Reconstruction for Ansatz Selection and Validation of the Variational Quantum Eigensolver
EAGER:QAC-QSA:用于变分量子本征求解器 Ansatz 选择和验证的哈密顿重建
- 批准号:
2038027 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER: QAC-QSA: A HYBRID QUANTUM-CLASSICAL PATH-INTEGRAL METHOD FOR CHEMICAL DYNAMICS
EAGER:QAC-QSA:化学动力学混合量子经典路径积分方法
- 批准号:
2038005 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant
EAGER-QAC-QSA: COLLABORATIVE RESEARCH: QUANTUM SIMULATION OF EXCITATIONS, BRAIDING, AND THE NONEQUILIBRIUM DYNAMICS OF FRACTIONAL QUANTUM HALL STATES
EAGER-QAC-QSA:合作研究:激发、编织和分数量子霍尔态的非平衡动力学的量子模拟
- 批准号:
2038028 - 财政年份:2020
- 资助金额:
$ 16.51万 - 项目类别:
Standard Grant