EAGER: Redox Regulation of Methanogenesis: A Basic Microbial Process at the Interface of Climate Change and Renewable Energy
EAGER:产甲烷作用的氧化还原调节:气候变化和可再生能源界面的基本微生物过程
基本信息
- 批准号:1020458
- 负责人:
- 金额:$ 29.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual merit: Methane is an important fuel and a major greenhouse gas linked to global warming. The current biological production of methane in nature is solely due to the methanogens a diverse group of strictly anaerobic microorganisms belonging to the newly recognized domain of life, the archaea. By generating methane in a process known as methanogenesis, these organisms facilitate the anaerobic degradation of complex polymers such as cellulose and starch that are produced by plants and, in so doing, play a central role in the global carbon cycle. Further, one of the modes of methanogenesis in which carbon dioxide and hydrogen are converted to methane and water is considered one of the most ancient forms of respiration on Earth. Although much has been learned about the biochemical pathways of methane formation, little is known as to how the process is regulated in response to change in environmental conditions. Importantly, it is not known how methanogens cope with sporadic exposure to oxygen, a common occurrence in their natural habitats. It is possible that, under moderate oxygen contamination, the organisms modify their cellular machinery so that methanogenesis is sustained--an important capability since methane formation represents their only source of energy. Preliminary studies indicate that modification of key enzymes by thioredoxin (Trx) plays a role in this control strategy. Trx is a ubiquitous regulatory protein that acts in partnership with an enzyme, Trx reductase, in the fine control of metabolism. However, this system remains unexplored in the methanogens, despite the fact that every member of this group carries genes with the potential for encoding these proteins. In this project we will test the concept that Trx/Trx reductase-based control is a determinant for the biological production of methane. We will utilize two methanogenic archaea as models: (i) Methanocaldococcus jannaschii, a deeply rooted autotroph that inhabits deep-sea hydrothermal vents and produces methane exclusively from carbon dioxide and hydrogen, and (ii) Methanosarcina mazei, a late-evolving freshwater methanogen with more diverse methanogenic capability. The latter organism will be investigated in collaboration with the University of Kiel (Germany). The objectives of the study are: (i) To characterize the putative Trxs and Trx reductases of M. jannaschii and M. mazei using proteins over-produced in a methanogen host, thereby providing in vivo relevance to the investigation; (ii) To identify the enzymes and other proteins that Trx modifies in these organisms; and (iii) To determine the effect of Trx-based modification on the activity of select methanogenic enzymes. The work will provide an entrée to broader contemporary questions relating to the control of methanogenesis in natural habitats and to how redox-based control systems of bacteria, animals and plants evolved from those originating in the archaea.Broader impact: This research will elucidate how methane-producing microorganisms cope with the challenging effects of exposure to oxygen in their habitats. Consequently, it will have broad societal and scientific implications relating to energy production, recycling of carbon in the biosphere and global warming. Greater insight into the regulation of methane formation raises the possibility of controlling its production in a useful manner?e.g., in bioreactors and sewage digesters. The project will integrate research and education through the training of two graduate students, four undergraduates, and a high school student. Undergraduate students and high school teachers from a current NSF-REU program directed by the PI ("Microbiology in the Post-Genome Era") will have an opportunity to participate in this research. Every effort will be made to recruit from underrepresented minority groups at all levels. The collaborative training will broaden the research experience of graduate students in the participating laboratories at Virginia Tech, University of Kiel and University of California-Berkeley. Its scientific and societal relevance coupled with the participation of a diverse group of investigators at different career stages will enrich the project as well as the research experience of all participants.
智力优势:甲烷是一种重要的燃料,也是与全球变暖有关的主要温室气体。目前自然界中甲烷的生物生产完全是由于产甲烷菌--一组属于新发现的生命领域的严格厌氧微生物--古生菌。通过在一种称为产甲烷的过程中产生甲烷,这些生物促进了由植物产生的纤维素和淀粉等复杂聚合物的厌氧降解,并在这样做的过程中,在全球碳循环中发挥了核心作用。此外,二氧化碳和氢气转化为甲烷和水的甲烷生成模式之一被认为是地球上最古老的呼吸形式之一。虽然关于甲烷形成的生化途径已经了解了很多,但关于这个过程是如何随着环境条件的变化而调节的,人们知之甚少。重要的是,目前尚不清楚产甲烷菌如何应对零星的氧气暴露,这种情况在它们的自然栖息地中很常见。在适度的氧气污染下,生物体可能会改变它们的细胞结构,以维持甲烷生成--这是一种重要的能力,因为甲烷的形成是它们唯一的能量来源。初步研究表明,硫氧还蛋白(Trx)对关键酶的修饰在这一控制策略中发挥了作用。Trx是一种普遍存在的调节蛋白,它与一种名为Trx还原酶的酶合作,精细控制新陈代谢。然而,这一系统在产甲烷菌中仍未被探索,尽管这一组中的每个成员都携带有可能编码这些蛋白质的基因。在这个项目中,我们将测试基于Trx/Trx还原酶的控制是甲烷生物生产的决定因素这一概念。我们将利用两个产甲烷古菌作为模型:(I)詹纳斯基甲烷球菌,一种根深蒂固的自养生物,生活在深海热液喷口,完全由二氧化碳和氢气产生甲烷;(Ii)马氏甲烷八叠球菌,一种进化较晚的淡水甲烷菌,具有更多样化的产甲烷能力。后一种生物将与基尔大学(德国)合作进行研究。该研究的目的是:(I)利用产甲烷菌宿主中过量生产的蛋白质,鉴定詹纳斯基分枝杆菌和玛氏分枝杆菌可能的Trxs和Trx还原酶,从而为研究提供体内相关性;(Ii)确定Trx在这些生物中修饰的酶和其他蛋白质;以及(Iii)确定基于Trx的修饰对部分产甲烷酶活性的影响。这项工作将为更广泛的当代问题提供一个入口,这些问题涉及自然生境中甲烷生成的控制,以及基于氧化还原的细菌、动物和植物控制系统是如何从起源于考古的控制系统进化而来的。广泛影响:这项研究将阐明产生甲烷的微生物如何应对其栖息地暴露于氧气的挑战性影响。因此,它将对能源生产、生物圈碳循环和全球变暖产生广泛的社会和科学影响。对甲烷形成规律的更深入的了解提高了以有用的方式控制其生产的可能性--例如,在生物反应器和污水消化器中。该项目将通过培养两名研究生、四名本科生和一名高中生来整合研究和教育。目前由PI(“后基因组时代的微生物学”)指导的NSF-REU项目的本科生和高中教师将有机会参与这项研究。将尽一切努力从各级代表性不足的少数群体中招募人才。合作培训将拓宽弗吉尼亚理工大学、基尔大学和加州大学伯克利分校参与实验室的研究生的研究经验。它的科学和社会意义,再加上不同职业阶段的不同调查人员群体的参与,将丰富该项目以及所有参与者的研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Biswarup Mukhopadhyay其他文献
Effect of temperature on the spectral properties of coenzyme F420 and related compounds.
温度对辅酶 F420 和相关化合物光谱特性的影响。
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:2.9
- 作者:
E. Purwantini;Biswarup Mukhopadhyay;Robin W. Spencer;Lacy Daniels - 通讯作者:
Lacy Daniels
Insights into Halophilic Protein Stability via the Generalized Born Model
- DOI:
10.1016/j.bpj.2010.12.457 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Charles J. Baker;Alexey Onufriev;Biswarup Mukhopadhyay - 通讯作者:
Biswarup Mukhopadhyay
Roles of Asp<sup>75</sup>, Asp<sup>78</sup>, and Glu<sup>83</sup> of GTP-dependent Phosphoenolpyruvate Carboxykinase from <em>Mycobacterium smegmatis</em>
- DOI:
10.1074/jbc.m602591200 - 发表时间:
2006-12-22 - 期刊:
- 影响因子:
- 作者:
Christopher L. Case;Edward M. Concar;Kristin L. Boswell;Biswarup Mukhopadhyay - 通讯作者:
Biswarup Mukhopadhyay
Biswarup Mukhopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Biswarup Mukhopadhyay', 18)}}的其他基金
REU Site: Microbiology in the Post Genome Era
REU 网站:后基因组时代的微生物学
- 批准号:
1156954 - 财政年份:2012
- 资助金额:
$ 29.88万 - 项目类别:
Continuing Grant
REU Site: Microbiology in the Post Genome Era
REU 网站:后基因组时代的微生物学
- 批准号:
0851902 - 财政年份:2009
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
相似国自然基金
马尾松体胚发生中GSH介导的Redox系统双效性及其作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
Redox变化条件下溶解性硅对地下水砷物种迁移转化的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动态redox条件下生物铁矿物对地下水低渗透区三氯乙烯迁移转化影响机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酮体β-羟丁酸调控Redox稳态及线粒体反向电子传递减轻心肺复苏脑损伤的机制研究
- 批准号:82072132
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
适度补硒对酒精性肝损伤的拮抗作用及机制研究:Insulin信号调控的Redox稳态和ADH1-ALDH2平衡
- 批准号:31900892
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Redox动态变化下潜流带中氯乙酰胺类除草剂转化过程的碳氯同位素解析
- 批准号:41772263
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
镉致Redox平衡失调氧化损伤的时效、量效与干预机制的研究
- 批准号:81473010
- 批准年份:2014
- 资助金额:75.0 万元
- 项目类别:面上项目
汉江平原潜流带Redox变化特征及有机磷农药迁移转化机理
- 批准号:41372255
- 批准年份:2013
- 资助金额:93.0 万元
- 项目类别:面上项目
谷胱甘肽及其介导的redox信号调控番茄体内百菌清降解代谢的机理研究
- 批准号:31301769
- 批准年份:2013
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
redox信号介导的6-BA调控黄瓜弱光适应性的生理与分子机制
- 批准号:31301818
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: 2024 Thiol-Based Redox Regulation and Signaling GRC and GRS: Mechanisms and Consequences of Redox Signaling
会议:2024年基于硫醇的氧化还原调节和信号传导GRC和GRS:氧化还原信号传导的机制和后果
- 批准号:
2418618 - 财政年份:2024
- 资助金额:
$ 29.88万 - 项目类别:
Standard Grant
Redox and Ca2+ signaling regulation of enamel mineralization
牙釉质矿化的氧化还原和 Ca2 信号传导调节
- 批准号:
10586833 - 财政年份:2023
- 资助金额:
$ 29.88万 - 项目类别:
Heme-, Redox-, and CO-dependent Regulation of Heme Homeostasis
血红素稳态的血红素、氧化还原和CO依赖性调节
- 批准号:
10660290 - 财政年份:2023
- 资助金额:
$ 29.88万 - 项目类别:
Redox Regulation of DksA-dependent Borrelia burgdorferi infectivity
DksA 依赖性伯氏疏螺旋体感染性的氧化还原调节
- 批准号:
10585293 - 财政年份:2023
- 资助金额:
$ 29.88万 - 项目类别:
Defining the landscape and mechanisms of redox regulation of metabolism during aging
定义衰老过程中氧化还原代谢调节的景观和机制
- 批准号:
10448564 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Redox Regulation of O-GlcNAcylation Signaling in the Pathogenesis of Alcoholic Fatty Liver Disease
酒精性脂肪肝发病机制中 O-GlcNAc 信号转导的氧化还原调节
- 批准号:
10613586 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Defining the landscape and mechanisms of redox regulation of metabolism during aging
定义衰老过程中氧化还原代谢调节的景观和机制
- 批准号:
10616788 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Redox-dependent regulation of Kv channels by a novel binding partner
新型结合伙伴对 Kv 通道的氧化还原依赖性调节
- 批准号:
575883-2022 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Exploring the role of the CXXC motif in the regulation of some enzymes involved in redox signaling.
探索 CXXC 基序在调节参与氧化还原信号传导的一些酶中的作用。
- 批准号:
RGPIN-2017-04925 - 财政年份:2022
- 资助金额:
$ 29.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




