More realistic statistical models for stage-structured time-series data

针对阶段结构时间序列数据的更真实的统计模型

基本信息

  • 批准号:
    1021553
  • 负责人:
  • 金额:
    $ 36.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Biologists often need to make predictions about how quickly animal or plant populations will grow or decline. For example, predictions of insect populations in agriculture are needed for pest management, and predictions of small fish and plankton species that are vital for marine food webs are important for marine conservation and management. Predicting population change is notoriously difficult because biologists know relatively little about the life cycle of most organisms and because they are subject to many influences of weather, predators, food resources, and habitat conditions. One important approach is to use past records of populations to estimate how quickly organisms develop, reproduce, and die. Accomplishing this is particularly difficult for the many kinds of organisms that can be counted only by their life stages, such as the eggs, larvae, or adults of insects. This project will improve methodology for estimating patterns of population change when only data on organism stages is available. The approach will be to adapt state-of-the-art computer algorithms to the context of such data. These algorithms will determine the range of plausible population growth patterns from the kind of rough data that can typically be collected. An important step in validating new algorithms for data analysis is to evaluate their performance in a controlled setting. Laboratory experiments with Pacific spider mites, an important agricultural pest, will be used for this purpose. The new analytical methodology to be developed in this project will be made available to the public as open-source software. In addition, training workshops will be conducted at major national conferences to facilitate the broad dissemination and application of this software. This project will result in the training of undergraduate and graduate students and a post-doctoral researcher in mathematical and statistical methods for population ecology.
生物学家经常需要预测动物或植物种群的增长或下降速度。 例如,害虫管理需要预测农业昆虫种群,对海洋食物网至关重要的小鱼和浮游生物物种的预测对海洋养护和管理很重要。 预测种群变化是出了名的困难,因为生物学家对大多数生物的生命周期知之甚少,而且它们受到天气、捕食者、食物资源和栖息地条件的诸多影响。 一个重要的方法是利用过去的种群记录来估计生物体发育、繁殖和死亡的速度。 要做到这一点,对于许多只能按生命阶段计数的生物来说尤其困难,例如昆虫的卵、幼虫或成虫。 该项目将改进在只有生物体阶段数据的情况下估计种群变化模式的方法。 方法将是使最先进的计算机算法适应这种数据的背景。 这些算法将从通常可以收集的粗略数据中确定合理的人口增长模式范围。 验证用于数据分析的新算法的一个重要步骤是评估它们在受控环境中的性能。 为此目的,将利用太平洋蜘蛛螨这种重要的农业害虫进行实验室试验。 该项目拟开发的新分析方法将作为开放源码软件向公众提供。 此外,将在主要的国家会议上举办培训讲习班,以促进这一软件的广泛传播和应用。 该项目将培养本科生和研究生以及一名人口生态学数学和统计方法的博士后研究员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Perry de Valpine其他文献

Estimation of General Multistage Models From Cohort Data

Perry de Valpine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Perry de Valpine', 18)}}的其他基金

Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2152860
  • 财政年份:
    2022
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Expanding the Computational Statistics Toolbox for General Hierarchical Models
扩展通用分层模型的计算统计工具箱
  • 批准号:
    1622444
  • 财政年份:
    2016
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
SI2-SSI: Integrating the NIMBLE Statistical Algorithm Platform with Advanced Computational Tools and Analysis Workflows
SI2-SSI:将 NIMBLE 统计算法平台与高级计算工具和分析工作流程集成
  • 批准号:
    1550488
  • 财政年份:
    2016
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
ABI Development: An extensible software platform for integrating multiple sources of data and uncertainty using hierarchical statistical models
ABI 开发:一个可扩展的软件平台,用于使用分层统计模型集成多个数据源和不确定性
  • 批准号:
    1147230
  • 财政年份:
    2012
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant

相似海外基金

Unlocking new generation physical modelling with realistic soil response
解锁具有真实土壤响应的新一代物理模型
  • 批准号:
    DP240101808
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Discovery Projects
Fatigue Life Assessment of Structures under Realistic Loading Conditions
实际载荷条件下结构的疲劳寿命评估
  • 批准号:
    DP240103201
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Discovery Projects
IMAGINE - Ion beaM Analysis to decipher the bioloGical response Induced by Nanoplastics at Environmentally realistic concentration
想象 - 离子束分析可破译纳米塑料在环境实际浓度下引起的生物反应
  • 批准号:
    EP/Z000629/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Research Grant
CAREER: Towards realistic halo-scale constraints on the nature of dark matter and gravity
职业:对暗物质和引力的性质进行现实的晕尺度限制
  • 批准号:
    2338388
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
ERI: Realistic Drone Integration in Rural Healthcare Supply Chains
ERI:农村医疗保健供应链中的现实无人机集成
  • 批准号:
    2347150
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
CAS: Novel Plasmon-Assisted Reaction Pathways on Well-Defined TiO2 Single Microcrystals in Realistic Conditions Using in-Situ Spectroscopies
CAS:使用原位光谱在现实条件下明确定义的 TiO2 单微晶上的新型等离子体辅助反应途径
  • 批准号:
    2247107
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
  • 批准号:
    2419070
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
A new nuclear matter calculation method based on realistic nuclear forces and the effect of many-body terms on the equation of state
基于现实核力和多体项对状态方程影响的新核物质计算方法
  • 批准号:
    23K03397
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scaling up a novel low-emission fungal fermentation-based production system to commercialise ultra-realistic meat whole-cuts alternatives
扩大基于真菌发酵的新型低排放生产系统,以实现超现实肉类全切替代品的商业化
  • 批准号:
    10076671
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Collaborative R&D
Development of a Realistic LiDAR Simulator based on Deep Generative Models
基于深度生成模型的现实 LiDAR 模拟器的开发
  • 批准号:
    23K16974
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了