Bayesian Methodology for Assessing Invariance in Behavioral Data

评估行为数据不变性的贝叶斯方法

基本信息

  • 批准号:
    1024080
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This project will focus on developing Bayes factors, a methodology that is an alternative to traditional statistical testing. Bayes factors have a natural advantage over classical frequentist hypothesis testing methods in that they can assess the evidence both for and against a null hypothesis. Bayesian analysis, however, relies on a degree of prior information supplied by the investigator. This prior specification can be viewed as representation of the investigator's belief in the state of nature before collecting data, and this degree of subjectivity has been a major criticism of Bayesian analysis. The project will develop so-called "default" methods that both minimize the reliance on this subjectivity and also provide optimal statistical properties in testing both for and against the null hypothesis. The theoretical study of Bayes factors will guide the choice of default prior.The physical sciences have made gains by demonstrating that certain relationships hold across all conditions. These kinds of relationships can be termed invariant. Some social and behavioral sciences, in contrast, traditionally discover new theories by demonstrating that experimental manipulations produce altered responses rather than by proving that the response is unchanged. Conventional statistical methodology has been developed to prove that responses are not invariant to stimuli, but these tools are ill-suited to proving invariance. In addition to the development of a Bayesian alternative to classical statistical testing, the project will develop software and make it available through web applets so that researchers can easily use the new statistical tools. It is anticipated that these new developments will make Bayes factors useful and common in a number of fields, including epidemiology, economics, psychology, wildlife, and biology.
该项目将侧重于开发贝叶斯因子,这是一种替代传统统计测试的方法。 贝叶斯因子与经典的频率论假设检验方法相比具有天然的优势,因为它们可以评估支持和反对零假设的证据。 然而,贝叶斯分析依赖于研究者提供的一定程度的先验信息。 这种事先的规范可以被看作是调查者在收集数据之前对自然状态的信念的代表,这种主观性程度一直是贝叶斯分析的主要批评。 该项目将开发所谓的“默认”方法,既最大限度地减少对这种主观性的依赖,也提供最佳的统计特性,以测试零假设和反对零假设。 对贝叶斯因子的理论研究将指导缺省先验的选择,物理科学已经通过证明某些关系在所有条件下都成立而取得了进展。 这种关系可以称为不变的。 相反,一些社会科学和行为科学传统上通过证明实验操作产生改变的反应来发现新理论,而不是通过证明反应是不变的。 传统的统计方法已经被开发出来,以证明反应不是不变的刺激,但这些工具是不适合证明不变性。 除了开发传统统计测试的贝叶斯替代方法外,该项目还将开发软件,并通过网络小程序提供,以便研究人员能够方便地使用新的统计工具。 预计这些新的发展将使贝叶斯因子在许多领域中有用和常见,包括流行病学,经济学,心理学,野生动物和生物学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongchu Sun其他文献

Generalized Linear Models Research Paper Modeling Bounded Outcome Scores Using The Binomial-Logit-Normal Distribution
广义线性模型研究论文使用二项式 Logit 正态分布对有界结果分数进行建模
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye Liang;Dongchu Sun;Chong He;M. Schootman
  • 通讯作者:
    M. Schootman
Objective priors for generative star-shape models
  • DOI:
    10.1016/j.spl.2012.02.008
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ye Liang;Dongchu Sun
  • 通讯作者:
    Dongchu Sun
Hierarchical Bayes estimation of hunting success rates
Rejoinder on: Natural induction: An objective Bayesian approach
Intrinsic Priors for Model Selection Using an Encompassing Model with Applications to Censored Failure Time Data
  • DOI:
    10.1023/a:1009641709382
  • 发表时间:
    2000-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Seong W. Kim;Dongchu Sun
  • 通讯作者:
    Dongchu Sun

Dongchu Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongchu Sun', 18)}}的其他基金

Bayes Factor Methods for Model Comparison in the Social Sciences
社会科学中模型比较的贝叶斯因子方法
  • 批准号:
    1260806
  • 财政年份:
    2013
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Analysis and Applications
合作研究:贝叶斯分析与应用
  • 批准号:
    1007874
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Bayesian Models for Assessing Shape and Covariance in Behavioral Data
用于评估行为数据的形状和协方差的贝叶斯模型
  • 批准号:
    0720229
  • 财政年份:
    2007
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Fifth International Workshop on Objective Bayesian Methodology
第五届客观贝叶斯方法论国际研讨会
  • 批准号:
    0506743
  • 财政年份:
    2005
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Bayesian Nonparametric Regression and Density Estimation Using CAR Priors
使用 CAR 先验的贝叶斯非参数回归和密度估计
  • 批准号:
    9972598
  • 财政年份:
    1999
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant

相似海外基金

AENETA Demonstration of the Assessing low-Carbon Transition ACT methodology
ANETA 评估低碳转型 ACT 方法的演示
  • 批准号:
    10034225
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    EU-Funded
Developing a new methodology for assessing future food production based on machine learning, remote sensing and crop models
基于机器学习、遥感和作物模型开发评估未来粮食生产的新方法
  • 批准号:
    2443093
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
    Studentship
Development of Methodology for Automatically Assessing Image Quality of Clinical Magnetic Resonance Image
临床磁共振图像图像质量自动评估方法的发展
  • 批准号:
    19K17249
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessing the contribution of transport electrification to climate change mitigation: An integrated modeling methodology
评估交通电气化对减缓气候变化的贡献:综合建模方法
  • 批准号:
    19K20507
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Population genomic methodology for analysis of ancient DNA: assessing population relationships and the temporal dynamics of natural selection
用于分析古代 DNA 的群体基因组方法:评估群体关系和自然选择的时间动态
  • 批准号:
    9381393
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
The scientific methodology to prevent a perioperative incident by detecting the risk factors and assessing the intervention
通过检测风险因素和评估干预措施来预防围手术期事件的科学方法
  • 批准号:
    17K18121
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Methodology for assessing the ability to control global value added networks using perfor-mance indicator-based modeling and in consideration of real decision-making structures by means of the agent-based simulation
使用基于绩效指标的建模并通过基于代理的模拟考虑实际决策结构来评估控制全球增值网络的能力的方法
  • 批准号:
    262424098
  • 财政年份:
    2015
  • 资助金额:
    $ 34万
  • 项目类别:
    Research Grants
CAREER: A Multi-scale Methodology for Assessing the Reductions in Seismic Risk Possible through Building Retrofit Design and Policy, from Buildings to Communities
职业生涯:评估通过建筑改造设计和政策(从建筑物到社区)可能降低地震风险的多尺度方法
  • 批准号:
    1250163
  • 财政年份:
    2013
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
An exposure-response methodology for assessing the impacts of bottom-fishing gear on benthic marine ecosystems
用于评估底层捕捞渔具对底栖海洋生态系统影响的暴露-响应方法
  • 批准号:
    372682-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 34万
  • 项目类别:
    Strategic Projects - Group
EAPSI: Using a strategic analysis methodology to determine sustainable energy system options for the Maldives Islands and assessing the transferability of this methodology
EAPSI:使用战略分析方法来确定马尔代夫群岛的可持续能源系统选项并评估该方法的可转移性
  • 批准号:
    1015690
  • 财政年份:
    2010
  • 资助金额:
    $ 34万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了