Bayesian Models for Assessing Shape and Covariance in Behavioral Data

用于评估行为数据的形状和协方差的贝叶斯模型

基本信息

  • 批准号:
    0720229
  • 负责人:
  • 金额:
    $ 29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

The project will investigate two distinct but related questions in psychological research. The first concerns response time (RT), the time taken to complete an experimental task. The shape of the RT distribution serves as a key marker of cognitive processing. Research will develop statistical methodology for testing whether shape is invariant or depends on covariates such as participant characteristics and experimental manipulations. The approach will be to choose appropriate distributions from a large class of three parameter distributions derived from the two-parameter exponential families introduced by Bar-Lev and Reiser augmented with a shift parameter. A unified approach will develop objective Bayesian methodology for this class of nonregular distributions. The second key research question is about the association of latent mental processes across people, items, and conditions. Understanding how these processes are related will provide insight into understanding cognition. The specific problem is to model the association of covariance matrices of two or more related bivariate distributions in a hierarchical setting. The project will develop objective priors for Bayesian analysis of these covariance matrices, generalizing recent developments in univariate signal-to-noise ratio priors.Both phases of the project address fundamental and significant questions in cognitive research in psychology, with potential impact in related areas as well. The study of response times also is fundamental to research in developmental and social psychology as well as psychopathology. A number of theories have been developed for cognitive processing in these fields and how it is affected by experimental conditions and characteristics of the participant. Most of these theories predict shape changes in the distribution of response times. However, the fundamental question of whether or not the shape of these distributions actually changes as a response to experimental condition has not been studied. Understanding if and how response time distribution shape changes will spur new theoretical directions. In addition, useful new statistical methods will be developed applicable beyond psychology. The second problem, estimating covariance matrices of latent variables, is motivated by the study of different modes of recall in memory tasks. Participants given lists of words to study and subsequently queried on these words may respond because of an "automatic" response, based perhaps on previous familiarity, or they may respond based on actual recollection. Assessment of these two processes is complicated by the fact that some words may be simultaneously easier to recall automatically or easier to remember; similarly, people may tend to be better simultaneously at automatic response or recollection. Assessment of these relationships is delicate and challenging. The research will have impact on the psychological study of working memory and cognitive aging. In addition, the statistical models are closely related to those used in areas such as epidemiology, economics, and ecology. Thus the results of the project will have impact well beyond the psychological sciences.
该项目将探讨心理学研究中两个不同但相关的问题。 第一个是反应时间(RT),即完成一项实验任务所需的时间。 RT分布的形状是认知处理的关键标志。 研究将开发统计方法来测试形状是否是不变的或取决于协变量,如参与者的特征和实验操作。 该方法将是选择适当的分布从一个大类的三个参数的分布来自两个参数的指数由巴列夫和雷泽增加了移位参数的家庭介绍。 一个统一的方法将开发这类非正则分布的客观贝叶斯方法。 第二个关键的研究问题是关于人、物品和条件之间潜在心理过程的关联。 了解这些过程是如何相关的将提供深入了解认知。 具体的问题是在分层设置中对两个或多个相关双变量分布的协方差矩阵的关联进行建模。 该项目将为这些协方差矩阵的贝叶斯分析开发客观先验,概括单变量信噪比先验的最新发展。该项目的两个阶段都涉及心理学认知研究中的基本和重要问题,并在相关领域产生潜在影响。 对反应时间的研究也是发展心理学、社会心理学和精神病理学研究的基础。 在这些领域的认知加工以及它如何受到实验条件和参与者特征的影响,已经发展了许多理论。 这些理论中的大多数预测响应时间分布的形状变化。 然而,这些分布的形状是否真的随着实验条件的响应而变化的根本问题尚未得到研究。 了解响应时间分布形状是否以及如何变化将激发新的理论方向。 此外,将开发出适用于心理学以外的有用的新统计方法。 第二个问题,估计潜变量的协方差矩阵,是由记忆任务中不同回忆模式的研究所激发的。 参与者给出了一系列要学习的单词,然后询问这些单词,他们可能会因为“自动”反应而做出反应,可能是基于以前的熟悉程度,或者他们可能会基于实际的回忆做出反应。 对这两个过程的评估是复杂的,因为有些单词可能同时更容易自动回忆或更容易记住;同样,人们可能倾向于同时更好地自动反应或回忆。 对这些关系的评估是微妙和具有挑战性的。 该研究对工作记忆和认知老化的心理学研究具有一定的借鉴意义。 此外,统计模型与流行病学、经济学和生态学等领域的统计模型密切相关。 因此,该项目的结果将产生远远超出心理科学的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongchu Sun其他文献

Generalized Linear Models Research Paper Modeling Bounded Outcome Scores Using The Binomial-Logit-Normal Distribution
广义线性模型研究论文使用二项式 Logit 正态分布对有界结果分数进行建模
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye Liang;Dongchu Sun;Chong He;M. Schootman
  • 通讯作者:
    M. Schootman
Objective priors for generative star-shape models
  • DOI:
    10.1016/j.spl.2012.02.008
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ye Liang;Dongchu Sun
  • 通讯作者:
    Dongchu Sun
Rejoinder on: Natural induction: An objective Bayesian approach
Hierarchical Bayes estimation of hunting success rates
Intrinsic Priors for Model Selection Using an Encompassing Model with Applications to Censored Failure Time Data
  • DOI:
    10.1023/a:1009641709382
  • 发表时间:
    2000-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Seong W. Kim;Dongchu Sun
  • 通讯作者:
    Dongchu Sun

Dongchu Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongchu Sun', 18)}}的其他基金

Bayes Factor Methods for Model Comparison in the Social Sciences
社会科学中模型比较的贝叶斯因子方法
  • 批准号:
    1260806
  • 财政年份:
    2013
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian Analysis and Applications
合作研究:贝叶斯分析与应用
  • 批准号:
    1007874
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Bayesian Methodology for Assessing Invariance in Behavioral Data
评估行为数据不变性的贝叶斯方法
  • 批准号:
    1024080
  • 财政年份:
    2010
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant
Fifth International Workshop on Objective Bayesian Methodology
第五届客观贝叶斯方法论国际研讨会
  • 批准号:
    0506743
  • 财政年份:
    2005
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Bayesian Nonparametric Regression and Density Estimation Using CAR Priors
使用 CAR 先验的贝叶斯非参数回归和密度估计
  • 批准号:
    9972598
  • 财政年份:
    1999
  • 资助金额:
    $ 29万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Electron momentum spectroscopy of radiosensitizers New benchmark data for assessing the theoretical models
放射增敏剂的电子动量谱 用于评估理论模型的新基准数据
  • 批准号:
    EP/Y022297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29万
  • 项目类别:
    Research Grant
MPhil/PhD Statistics (Assessing inequality in the Criminal Justice System using novel causal inference methods and Bayesian spatial models)
硕士/博士统计学(使用新颖的因果推理方法和贝叶斯空间模型评估刑事司法系统中的不平等)
  • 批准号:
    2905812
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Studentship
Assessing the impact of ALS Mutations on mRNA Translation in hiPSC-derived Neurons and Neuromuscular Models
评估 ALS 突变对 hiPSC 衍生神经元和神经肌肉模型中 mRNA 翻译的影响
  • 批准号:
    2888991
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Studentship
Assessing mechanisms of brain malformation in SCN3A encephalopathy using stem cell-based models
使用干细胞模型评估 SCN3A 脑病的脑畸形机制
  • 批准号:
    10841993
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
Assessing the role of corticostriatal circuitry in polysubstance use of fentanyl and methamphetamine using rat self-administration models
使用大鼠自我给药模型评估皮质纹状体回路在芬太尼和甲基苯丙胺多物质使用中的作用
  • 批准号:
    10737092
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
RAPID: Tuning and Assessing Lahaina Wildfire Models with AI Enhanced Data
RAPID:利用 AI 增强数据调整和评估拉海纳野火模型
  • 批准号:
    2347372
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
    Standard Grant
Assessing Synaptic and Intrinsic Effects of Patient-Derived ID-Associated CACNA1A Mutations Using Multiple Models
使用多种模型评估患者源性 ID 相关 CACNA1A 突变的突触和内在影响
  • 批准号:
    10657084
  • 财政年份:
    2023
  • 资助金额:
    $ 29万
  • 项目类别:
Assessing latent-structure models in natural language processing with artificial datasets
使用人工数据集评估自然语言处理中的潜在结构模型
  • 批准号:
    RGPIN-2021-03134
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing in vitro fish models for assessing environmental pharmaceutical risk: Integrating spatial-temporal kinetics of pharmaceutical uptake
改进用于评估环境药物风险的体外鱼类模型:整合药物吸收的时空动力学
  • 批准号:
    2754820
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Studentship
Evaluating renewal of existing hydropower for deep decarbonization: identifying opportunities, assessing feasibility and improving technology characterization in electricity planning models
评估现有水电的深度脱碳更新:识别机会、评估可行性并改进电力规划模型中的技术特征
  • 批准号:
    559179-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了