Learning and the Planning Horizon: Applications to Economic Fluctuations, Asset Prices and Policy

学习和规划视野:在经济波动、资产价格和政策中的应用

基本信息

  • 批准号:
    1025011
  • 负责人:
  • 金额:
    $ 17.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

LEARNING AND THE PLANNING HORIZON: APPLICATIONS TO ECONOMIC FLUCTUATIONS, ASSET PRICES AND POLICYIntellectual Merit. A central feature of modern economic theory is forward-looking decision making by firms and households. While the rational expectations approach provides the benchmark theory of expectation formation, adding learning dynamics has yielded many novel insights. The proposed research will advance this research conceptually and examine several prominent issues in macroeconomics. Theoretical issues will focus on incorporation of structural knowledge, implications of the planning horizon, and eductive stability in infinite-horizon models. Applications will include monetary and fiscal policy in deep recessions, the impact of anticipated future changes in fiscal policy, and the tendency for asset prices to exhibit bubbles and crashes. Unifying themes are that learning impacts both the stability of the system and the propagation mechanisms for shocks. The research will focus on five interconnected lines of research:(i) Macroeconomic policy in New Keynesian models. Even when private agents use long-horizon decision rules, a large pessimistic expectations shock can push the economy along a trajectory of falling output and deflation. This research will study alternative monetary and fiscal policies for avoiding deep recession and deflation, and which return the economy to equilibrium. The implications of heterogeneous expectations for monetary policy will also be studied.(ii) Anticipated policy and learning. This research will show how private agents can combine econometric learning with structural knowledge about future policy changes. Examples include the impact on hours and investment of anticipated future changes in government spending and taxes. The scope of validity of Ricardian equivalence under learning will receive particular attention.(iii) Learning to optimize and the planning horizon. This project proposes a natural model of bounded optimality for long-horizon agents. The research will show how solving and updating suitable two-period decision problems, using adaptive learning rules, can converge to fully optimal decisions. The methodology will be extended to cover real business cycle (RBC) type models.(iv) Financial markets. One application will examine the impact of learning about risk and return on stock price dynamics, and determine the conditions in which bubbles and crashes are likely to emerge. A second application will look at the possibility of financial collapse when adaptive learning is introduced into a model of financial intermediation with long-term relationships.(v) Eductive stability in RBC models. This research will examine whether mental reasoning based on common knowledge can lead agents to coordinate on rational expectations in RBC models. Eductive learning combined with long-horizon decision-making appears prone to cyclical dynamics and even instability. Methods for combining eductive and adaptive learning will also be explored.Broader Impacts. The broader aim of the project is to inform policymakers of the need to take into account learning and bounded rationality by private agents and policymakers themselves. The importance of learning, expectations and model uncertainty, for monetary and fiscal policy, is increasingly being recognized by policymakers. In the last five years the PI has been a visiting scholar at the Cleveland and St. Louis Federal Reserve Banks and made presentations at the Board of Governors, the Kansas City and San Francisco FRBs, the Bank of Japan, the Bank of England, the Banque de France, the Central Bank of Chile, the ECB, the IMF and the IMF Institute. The PI has also co-authored surveys, including one aimed at policymakers. The research from the proposed project will be disseminated widely in seminars, workshops and conferences, at universities and central banks. Research papers from the project will be made available on the web. The project will also support the research of graduate students. Past NSF grants by the PI have supported research on related topics and led to PhD theses and academic appointments at research universities.
学习与规划视野:经济波动、资产价格与政策的应用。现代经济理论的一个核心特征是企业和家庭的前瞻性决策。虽然理性预期方法提供了预期形成的基准理论,但增加学习动态产生了许多新的见解。拟议的研究将在概念上推进这一研究,并探讨宏观经济学中的几个突出问题。理论问题将集中在纳入结构知识,规划视野的影响,和教育的稳定性在无限视野模型。应用将包括深度衰退中的货币和财政政策,财政政策预期未来变化的影响,以及资产价格出现泡沫和崩溃的趋势。统一的主题是,学习影响系统的稳定性和冲击的传播机制。研究将集中在五个相互关联的研究领域:(一)新凯恩斯主义模型中的宏观经济政策。即使私人代理人使用长期决策规则,巨大的悲观预期冲击也可能推动经济沿着产出下降和通货紧缩的轨道前进。本研究将研究避免深度衰退和通货紧缩的替代货币和财政政策,并使经济恢复平衡。我们还将研究异质预期对货币政策的影响。(ii)预期的政策和学习。这项研究将展示私人代理人如何将联合收割机计量经济学学习与未来政策变化的结构知识结合起来。例如,政府支出和税收的预期未来变化对工作时间和投资的影响。在学习条件下,Riccott等值的有效性范围将受到特别的关注。(iii)学习优化和规划视野。该项目提出了一个自然模型的有界最优的长期视野代理。该研究将展示如何解决和更新合适的两阶段决策问题,使用自适应学习规则,可以收敛到完全最优的决策。该方法将扩展到涵盖真实的商业周期(RBC)类型模型。(iv)金融市场其中一个应用程序将研究学习风险和回报对股票价格动态的影响,并确定泡沫和崩溃可能出现的条件。第二个应用程序将研究当自适应学习引入具有长期关系的金融中介模型时,金融崩溃的可能性。(v)RBC模型的教育稳定性。本研究将探讨基于常识的心理推理是否可以导致智能体在RBC模型中协调理性预期。教育性学习与长期决策相结合似乎容易出现周期性动态,甚至不稳定。还将探索结合教育性学习和适应性学习的方法。更广泛的影响。该项目更广泛的目标是让决策者认识到需要考虑到私人代理人和决策者本身的学习和有限理性。决策者日益认识到学习、预期和模型不确定性对货币和财政政策的重要性。在过去的五年里,PI一直是克利夫兰和圣路易斯联邦储备银行的访问学者,并在理事会,堪萨斯城和旧金山联邦储备银行,日本银行,英格兰银行,法兰西银行,智利中央银行,欧洲央行,国际货币基金组织和国际货币基金组织研究所发表演讲。PI还共同撰写了调查,包括一项针对政策制定者的调查。拟议项目的研究成果将在大学和中央银行的研讨会、讲习班和会议上广泛传播。该项目的研究论文将在网上提供。该项目还将支持研究生的研究。PI过去的NSF赠款支持了相关主题的研究,并导致了研究型大学的博士论文和学术任命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Evans其他文献

CONFIRMING HEATING TRENDS OF NEAR-SURFACE OCEAN TEMPERATURES, 1988 TO 2022
确认 1988 年至 2022 年近地表海洋温度的加热趋势
Qi review of three epidural solutions for post-op analgesia
EPA ’ s Proposed New Source Performance Standards for Electric Generating Units : Understanding the Role of the Ocean in Climate Science
EPA 提议的发电机组新能源绩效标准:了解海洋在气候科学中的作用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    George Evans;Amarjit Singh
  • 通讯作者:
    Amarjit Singh
NBER WORKING PAPER SERIES FINANCIAL INNOVATION, THE DISCOVERY OF RISK, AND THE U.S. CREDIT CRISIS
NBER 工作论文系列金融创新、风险发现和美国信用危机
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emine Boz;Enrique G. Mendoza;Andy Abel;Satyajit Chatterjee;Tim;Cogley;Enrica Detragiache;Bora Durdu;George Evans;Martin Evans;Matteo Iacoviello;Urban Jermann;Robert Kollmann;Anton Korinek;Kevin J. Lansing;M. Loretan;Agnieszka Markiewicz;Jim Nason;Paolo A. Pesenti;Vincenzo Quadrini;David Romer;Tom Sargent;S. V. Nieuwerburgh
  • 通讯作者:
    S. V. Nieuwerburgh

George Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Evans', 18)}}的其他基金

Expectation Coordination and Agent-level Learning
期望协调和代理级学习
  • 批准号:
    1559209
  • 财政年份:
    2016
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Bounded Rationality and Macroeconomic Policy
有限理性与宏观经济政策
  • 批准号:
    0617859
  • 财政年份:
    2006
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Continuing Grant
Expectations, Learning and Economic Policy
期望、学习和经济政策
  • 批准号:
    0136848
  • 财政年份:
    2002
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Continuing Grant
Expectations and Economic Fluctuations
预期和经济波动
  • 批准号:
    9617501
  • 财政年份:
    1997
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Continuing Grant
The Characterization of ARMA Solutions to General Linear Rational Expectations Models and An Analysis of Their Expectational Stability
一般线性理性期望模型ARMA解的表征及其期望稳定性分析
  • 批准号:
    8510763
  • 财政年份:
    1986
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Continuing Grant

相似海外基金

Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
  • 批准号:
    2326816
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Exploring fire as medicine to revitalize cultural burning in the Upper Midwest
规划:FIRE-PLAN:探索火作为药物,以振兴中西部北部的文化燃烧
  • 批准号:
    2349282
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
  • 批准号:
    2345749
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Building Wildland Fire Science Capacity in Alaska Through The University of Alaska Fairbanks Rural Campuses
规划:FIRE-PLAN:通过阿拉斯加大学费尔班克斯乡村校区建设阿拉斯加荒地火灾科学能力
  • 批准号:
    2333423
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    Continuing Grant
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 17.02万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了