Expectations, Learning and Economic Policy
期望、学习和经济政策
基本信息
- 批准号:0136848
- 负责人:
- 金额:$ 18.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central feature of modem economic theory is the forward-looking decisions made by firms and households. Expectations of economic agents are therefore a key component of macroeconomic theories of consumption, investment, inflation and the business cycle. The RE (rational expectations) methodology has provided an elegant benchmark theory of expectation formation: expectations are assumed to be rational in the sense that agents do not make any systematic errors, given the available information. Two fundamental issues for this (now standard) approach concern the attainability of RE, i.e. whether boundedly rational agents can arrive at RE through a learning process, and the possibility of indeterminacy or multiplicity of RE equilibria. A related question is how the central messages of rational expectations are modified by the recognition that realistic decision-makers are likely to use misspecified models, and to be aware of this limitation. These interconnected issues, which have implications for economic policy and business cycle modeling, are pursued by this project on several fronts. A common theme throughout the project is the role that learning plays in the evolution of expectations.The first part focuses on monetary and fiscal policy. Recent work based on "new Phillips curve" models has obtained (under the RE assumption) interest rate feedback rules designed to implement optimal policy. The proposed research shows that if policy rules are formulated entirely in terms of responses to fundamental shocks, as might appear natural, the equilibrium will be unstable if private agents follow adaptive learning rules. The project then shows that stability can be achieved, and optimal discretionary policy implemented, if the interest rate rule depends in the right way on both the fundamental shocks and observed private expectations. This project extends the analysis to cases in which the monetary authorities can commit themselves to a fixed rule. Other extensions take up the interaction of monetary and fiscal policy and study the implications of adaptive learning for interest rate rules that may be subject to liquidity traps. The focus of the second part is business cycle fluctuations. Extensions of the Real Business Cycle framework to incorporate monopolistic competition have shown that multiplicities can arise, taking the form of expectation driven fluctuations around an indeterminate steady state. This possibility is known also to arise in some standard monetary models. Recent work on expectational stability and adaptive learning has provided convenient tools to determine whether these "endogenous fluctuations" can arise as outcomes of adaptive learning rules. Preliminary results show that a subclass of "resonant frequency" solutions is stable under learning for a range of parameters. This project computes the parameter regions for which stable endogenous fluctuations occur and investigates whether macroeconomic policy can be used to prevent endogenous fluctuations from arising. A third line of research looks at the implications of underparameterization for the "Lucas Critique" of economic policy, one of the dramatic implications of RE. Private agents that recognize their misspecification will respond by using "constant gain" learning rules that trade off tracking and filtering. A simple example is adaptive expectations with an optimally tuned coefficient. This project shows that for much of the parameter space monetary policy remains subject to the Lucas Critique. However, there are also regions in which the expectation rule is invariant and the Lucas Critique does not apply. Related work examines (i) the stability under learning of the high inflation equilibrium, in the seignorage model, to the assumption that some agents do not possess current information, (ii) the role of structural heterogeneity in facilitating or impeding coordination on a RE equilibrium, and (iii) the possibility that underparameterized learning may generate heterogeneity of expectations.
现代经济理论的一个中心特征是企业和家庭做出的前瞻性决策。因此,对经济主体的预期是消费、投资、通胀和商业周期等宏观经济理论的关键组成部分。RE(理性预期)方法论为预期形成提供了一种优雅的基准理论:在给定可用信息的情况下,预期被假设为理性的,即代理人不会犯任何系统性错误。这种(现在是标准的)方法的两个基本问题涉及RE的可达性,即有限理性代理是否可以通过学习过程到达RE,以及RE均衡的不确定性或多重性的可能性。一个相关的问题是,认识到现实的决策者可能会使用错误指定的模型,并意识到这一限制,理性预期的核心信息是如何修改的。这些相互关联的问题对经济政策和商业周期建模有影响,本项目在几个方面进行了研究。整个项目的一个共同主题是学习在预期的演变中所起的作用。第一部分集中在货币和财政政策上。最近基于“新菲利普斯曲线”模型的研究获得了(在RE假设下)旨在实施最优政策的利率反馈规则。拟议中的研究表明,如果政策规则完全根据对基本面冲击的反应来制定--这可能看起来很自然--如果私人代理人遵循适应性学习规则,均衡将是不稳定的。然后,该项目表明,如果利率规则以正确的方式依赖于基本面冲击和观察到的私人预期,就可以实现稳定,并实施最优的相机抉择政策。该项目将分析扩展到货币当局可以承诺遵守固定规则的情况。其他扩展研究了货币和财政政策的相互作用,并研究了适应性学习对可能受到流动性陷阱影响的利率规则的影响。第二部分的重点是经济周期波动。对实际经济周期框架的扩展以纳入垄断竞争表明,多重性可能会出现,表现为预期驱动的围绕不确定稳定状态的波动。众所周知,这种可能性也出现在一些标准货币模型中。最近关于预期稳定性和适应性学习的研究提供了便利的工具,以确定这些“内生波动”是否会作为适应性学习规则的结果而出现。初步结果表明,在一定范围的参数学习下,“共振频率”解的子类是稳定的。该项目计算发生稳定内生波动的参数区域,并调查宏观经济政策是否可以用来防止内生波动的产生。第三条研究路线着眼于参数不足对经济政策的“卢卡斯批评”的影响,这是RE的戏剧性影响之一。认识到自己错误指定的私人代理将使用权衡跟踪和过滤的“恒定增益”学习规则做出回应。一个简单的例子是具有最佳调整系数的自适应预期。这个项目表明,在大部分参数空间中,货币政策仍然受到卢卡斯的批评。然而,也有一些领域的期望规则是不变的,卢卡斯的批评不适用。相关工作考察了(I)在铸币税模型中,在某些代理人不拥有当前信息的假设下,高通胀均衡在学习下的稳定性,(Ii)结构异质性在促进或阻碍RE均衡上的协调方面的作用,以及(Iii)学习参数不足可能产生预期的异质性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Evans其他文献
CONFIRMING HEATING TRENDS OF NEAR-SURFACE OCEAN TEMPERATURES, 1988 TO 2022
确认 1988 年至 2022 年近地表海洋温度的加热趋势
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
George Evans;Amarjit Singh - 通讯作者:
Amarjit Singh
Qi review of three epidural solutions for post-op analgesia
- DOI:
10.1007/bf03016383 - 发表时间:
2008-06-01 - 期刊:
- 影响因子:3.300
- 作者:
George Evans;Neal Badner;George Nicolaou;Dave Smith - 通讯作者:
Dave Smith
EPA ’ s Proposed New Source Performance Standards for Electric Generating Units : Understanding the Role of the Ocean in Climate Science
EPA 提议的发电机组新能源绩效标准:了解海洋在气候科学中的作用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
George Evans;Amarjit Singh - 通讯作者:
Amarjit Singh
NBER WORKING PAPER SERIES FINANCIAL INNOVATION, THE DISCOVERY OF RISK, AND THE U.S. CREDIT CRISIS
NBER 工作论文系列金融创新、风险发现和美国信用危机
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Emine Boz;Enrique G. Mendoza;Andy Abel;Satyajit Chatterjee;Tim;Cogley;Enrica Detragiache;Bora Durdu;George Evans;Martin Evans;Matteo Iacoviello;Urban Jermann;Robert Kollmann;Anton Korinek;Kevin J. Lansing;M. Loretan;Agnieszka Markiewicz;Jim Nason;Paolo A. Pesenti;Vincenzo Quadrini;David Romer;Tom Sargent;S. V. Nieuwerburgh - 通讯作者:
S. V. Nieuwerburgh
George Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Evans', 18)}}的其他基金
Expectation Coordination and Agent-level Learning
期望协调和代理级学习
- 批准号:
1559209 - 财政年份:2016
- 资助金额:
$ 18.52万 - 项目类别:
Standard Grant
Learning and the Planning Horizon: Applications to Economic Fluctuations, Asset Prices and Policy
学习和规划视野:在经济波动、资产价格和政策中的应用
- 批准号:
1025011 - 财政年份:2010
- 资助金额:
$ 18.52万 - 项目类别:
Continuing Grant
Bounded Rationality and Macroeconomic Policy
有限理性与宏观经济政策
- 批准号:
0617859 - 财政年份:2006
- 资助金额:
$ 18.52万 - 项目类别:
Continuing Grant
Expectations and Economic Fluctuations
预期和经济波动
- 批准号:
9617501 - 财政年份:1997
- 资助金额:
$ 18.52万 - 项目类别:
Continuing Grant
The Characterization of ARMA Solutions to General Linear Rational Expectations Models and An Analysis of Their Expectational Stability
一般线性理性期望模型ARMA解的表征及其期望稳定性分析
- 批准号:
8510763 - 财政年份:1986
- 资助金额:
$ 18.52万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of unsupervised learning methods for economic analysis
经济分析无监督学习方法的发展
- 批准号:
23H00804 - 财政年份:2023
- 资助金额:
$ 18.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Economic and social outcomes of work-based learning across economic sectors: The case of Foundation Apprenticeships in Scotland
跨经济部门基于工作的学习的经济和社会成果:苏格兰基金会学徒制案例
- 批准号:
2760669 - 财政年份:2022
- 资助金额:
$ 18.52万 - 项目类别:
Studentship
Collaborative Research: Artificial intelligence and deep learning solution methods for dynamic economic models
合作研究:动态经济模型的人工智能和深度学习求解方法
- 批准号:
1949430 - 财政年份:2020
- 资助金额:
$ 18.52万 - 项目类别:
Standard Grant
Collaborative Research: Artificial intelligence and deep learning solution methods for dynamic economic models
合作研究:动态经济模型的人工智能和深度学习求解方法
- 批准号:
1949413 - 财政年份:2020
- 资助金额:
$ 18.52万 - 项目类别:
Standard Grant
Work-based learning environments (WBLE) for fostering industry-relevant skills and optimal economic performance
基于工作的学习环境 (WBLE),用于培养行业相关技能和最佳经济绩效
- 批准号:
2271328 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Studentship
Foundations of Behavioral Economic Theory: Uncertainty, Learning, and Incentives
行为经济学理论的基础:不确定性、学习和激励
- 批准号:
19J01049 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sustainable economic and ecological grazing systems - learning from innovative practitioners
可持续经济和生态放牧系统——向创新实践者学习
- 批准号:
BB/R005710/2 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Research Grant
Spatial economic modeling with endogenous agglomeration: A stochastic learning dynamics approach
内生集聚的空间经济建模:随机学习动态方法
- 批准号:
19K15108 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Safety, robustness, and economic properties of machine learning
机器学习的安全性、稳健性和经济性
- 批准号:
2219023 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Studentship
Learning about Economic Issues in German Political Education
在德国政治教育中学习经济问题
- 批准号:
19K14247 - 财政年份:2019
- 资助金额:
$ 18.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists