Transcriptional Control of Early Development in Myxococcus Xanthus
粘球菌早期发育的转录控制
基本信息
- 批准号:1024989
- 负责人:
- 金额:$ 51.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit:Most microbes live in a "feast-or-famine" environment, growing and reproducing in times of plenty and surviving the lean times. The ability of a cell to survive starvation conditions is crucial to the ultimate survival of the population. Therefore, identifying and understanding the mechanisms used by microbes to survive under starvation conditions is essential for understanding how cells adapt to environmental change. The Myxobacteria, of which M. xanthus is the best characterized member, has evolved a novel solution to this feast-or-famine problem; developmental multicellularity, where a subset of cells differentiate into a dormant environmentally resistant state called a myxospore and constructing a macroscopic structure called a fruiting body. It is inside the fruiting body where the dormant myxospores persist until environmental conditions change to favor their eventual germination, and the reestablishment of the colony. This project focuses on identifying those genetic mechanisms used by M. xanthus to monitor and respond to nutrient availability and to determine which nutrient limiting conditions trigger cells to activate the developmental program. Specifically, this research will identify the regulatory genes required for the initiation of this complex developmental response as well as the pathways they control. The long term goal is to construct a detailed regulatory circuitry map that models the genetic interactions dsecribing the starvation-induced developmental program. This regulatory map will also aid in understanding the evolution of multicellular development in the Myxobacteria and its evolutionary relationship to other developmental microbes such as Bacillus, Cyanobacteria and Streptomyces. Broader Impacts: The broader impacts of this research are primarily two-fold. First, this research will provide basic information on starvation-activation of gene expression in Myxobacteria. This is important because it is during this ?starvation? period that many microbes, including the Myxobacteria, produce compounds and enzymes of commercial, agricultural and pharmacological importance. By identifying and modeling the regulatory circuitry of starvation recognition and development initiation, these processes can eventually be engineered to efficiently produce biologically important compounds. Currently the Myxobacteria represent the third largest bacterial producers of such compounds and yet remain an understudied and under-tapped resource of great potential. This research will produce materials, reagents and general methods that can be applied to other related research areas in both industry and academia. Second, this project will serve as a training laboratory to graduate, undergraduate and high school students, many of whom are women and minorities who will continue with long-term careers in science. During the course of this project, high school, undergraduate, and graduate students will receive training in state-of-the-art research methods and techniques. One objective is to develop an integrative course for undergraduates under the guidance of graduate students. This experience will not only provide training in mentoring and teaching to graduate students, but will also provide an intensive independent research experience for undergraduates working as members of a research team. In the end, this research project will benefit society by aiding in the training of the next generation of scientists and by increasing our basic knowledge of microbial ecology, genetic regulatory mechanisms and their evolution, and natural product production.
智力优势:大多数微生物生活在“非饱即饿”的环境中,在丰饶时期生长繁殖,在贫瘠时期生存。细胞在饥饿条件下生存的能力对种群的最终生存至关重要。因此,识别和理解微生物在饥饿条件下生存的机制对于理解细胞如何适应环境变化至关重要。粘杆菌,其中M. xanthus是最具特征的成员,已经进化出一种新的解决方案来解决这个饥饿或饥饿的问题;发育多细胞,其中一部分细胞分化成一种休眠的环境抗性状态,称为粘孢子,并构建一个宏观结构,称为子实体。在子实体内部,休眠的黏液孢子持续存在,直到环境条件发生变化,有利于它们最终发芽,并重新建立菌落。本项目的重点是确定黄顶草用于监测和响应营养可用性的遗传机制,并确定哪些营养限制条件会触发细胞激活发育程序。具体来说,本研究将确定启动这种复杂发育反应所需的调控基因以及它们控制的途径。长期目标是构建一个详细的调控电路图,模拟描述饥饿诱导的发育程序的遗传相互作用。这一调控图谱也将有助于理解黏菌属多细胞发育的进化及其与其他发育微生物(如芽孢杆菌、蓝藻和链霉菌)的进化关系。更广泛的影响:这项研究的更广泛的影响主要是双重的。首先,本研究将为饥饿激活黏菌基因表达提供基础信息。这很重要,因为这是在饥饿的时候。包括黏菌在内的许多微生物产生具有商业、农业和药理意义的化合物和酶的时期。通过识别和模拟饥饿识别和发育启动的调控电路,这些过程最终可以被设计成有效地产生生物学上重要的化合物。目前,粘杆菌是这类化合物的第三大细菌生产者,但仍是一个未充分研究和未开发的巨大潜力资源。这项研究将产生可应用于工业界和学术界其他相关研究领域的材料、试剂和一般方法。其次,该项目将作为研究生、本科生和高中生的培训实验室,其中许多是妇女和少数民族,他们将继续从事长期的科学事业。在这个项目的过程中,高中生、本科生和研究生将接受最先进的研究方法和技术的培训。一个目标是在研究生的指导下开发一门面向本科生的综合课程。这一经历不仅将为研究生提供指导和教学方面的培训,还将为作为研究团队成员的本科生提供密集的独立研究经验。最终,这项研究项目将通过帮助培养下一代科学家,增加我们对微生物生态学、遗传调控机制及其进化以及天然产物生产的基本知识,从而造福社会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitchell Singer其他文献
Genetic evidence for the interaction between cluster I and cluster III rifampicin resistant mutations.
I 簇和 III 簇利福平耐药突变之间相互作用的遗传证据。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:5.6
- 作者:
Mitchell Singer;Ding Jun Jin;William Walter;C A Gross - 通讯作者:
C A Gross
Mitchell Singer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitchell Singer', 18)}}的其他基金
DNA replication a checkpoint in regulating development in Myxococcus xanthus
DNA 复制是调节黄色粘球菌发育的检查点
- 批准号:
1354562 - 财政年份:2014
- 资助金额:
$ 51.69万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Post-transcriptional control of slam in early Drosophila embryos
早期果蝇胚胎中 slam 的转录后控制
- 批准号:
409790336 - 财政年份:2018
- 资助金额:
$ 51.69万 - 项目类别:
Research Grants
Post-transcriptional mechanisms in the control of early bovine development.
控制早期牛发育的转录后机制。
- 批准号:
155366-2012 - 财政年份:2016
- 资助金额:
$ 51.69万 - 项目类别:
Discovery Grants Program - Individual
Post-transcriptional control of early bovine embryo development
早期牛胚胎发育的转录后控制
- 批准号:
483497-2015 - 财政年份:2015
- 资助金额:
$ 51.69万 - 项目类别:
University Undergraduate Student Research Awards
Post-transcriptional mechanisms in the control of early bovine development.
控制早期牛发育的转录后机制。
- 批准号:
155366-2012 - 财政年份:2015
- 资助金额:
$ 51.69万 - 项目类别:
Discovery Grants Program - Individual
Post-transcriptional mechanisms in the control of early bovine development.
控制早期牛发育的转录后机制。
- 批准号:
155366-2012 - 财政年份:2014
- 资助金额:
$ 51.69万 - 项目类别:
Discovery Grants Program - Individual
Post-transcriptional mechanisms in the control of early bovine development.
控制早期牛发育的转录后机制。
- 批准号:
155366-2012 - 财政年份:2013
- 资助金额:
$ 51.69万 - 项目类别:
Discovery Grants Program - Individual
Post-transcriptional mechanisms in the control of early bovine development.
控制早期牛发育的转录后机制。
- 批准号:
155366-2012 - 财政年份:2012
- 资助金额:
$ 51.69万 - 项目类别:
Discovery Grants Program - Individual
Transcriptional Control of Early Coronary Vascular Development
早期冠状血管发育的转录控制
- 批准号:
7567528 - 财政年份:2007
- 资助金额:
$ 51.69万 - 项目类别:
Transcriptional Control of Early Coronary Vascular Development
早期冠状血管发育的转录控制
- 批准号:
7213970 - 财政年份:2007
- 资助金额:
$ 51.69万 - 项目类别:
Transcriptional Control of Early Coronary Vascular Development
早期冠状血管发育的转录控制
- 批准号:
7337332 - 财政年份:2007
- 资助金额:
$ 51.69万 - 项目类别: