Multi-Source Visual Analytics
多源可视化分析
基本信息
- 批准号:1025177
- 负责人:
- 金额:$ 49.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractData visualization forms an important aspect of analysis in the field of visual analytics. Analysts rely on visual tools to process massive data sets and discover meaningful patterns in the data. A common strategy for many visualization tools is to transform high-dimensional data to an intermediate lower-dimensional space and then project to screen space using a visualization transformation. For example, a data set with 200 dimensions can be transformed to an intermediate 4D representation and then mapped to screen space by using two-dimensionsfor the location and two dimensions to determine shape and color. Therefore, the mathematical foundations of visualization are closely related to the problem of dimensionality reduction.While dimensionality reduction is a necessary step to visualize the data, the final goal of visual analytics is data analysis, such as searching, clustering, and the detection of outliers. Therefore, there is an urgent need to study dimensionality reduction techniques that are especially useful for data analysis. This research involves the development and implementation of linear and nonlinear dimensionality reduction algorithms for the transformation and visualization of high-dimensional data. The novel aspect of the transformation is that dimensionality reduction and clustering are performed simultaneously in a joint framework. In addition, this research involves the development and implementation of novel algorithms for multi-source data transformations based on multiple kernel learning (MKL). This addresses the question of fusing a multitude of heterogeneous independently collected data. In the past, most research on MKL has focused on supervised learning. One major contribution of this research is to extend MKL to the unsupervised case. This research presents visual analytics as a bridge between theoretical foundations in machine learning and real-world applications. This research is utilizing two testbed data bases, one consisting of printed documents as might be used by the intelligence community and one based on public health information.
摘要数据可视化是可视化分析领域的一个重要方面。分析师依靠可视化工具来处理大量数据集并发现数据中有意义的模式。许多可视化工具的常见策略是将高维数据转换为中间的低维空间,然后使用可视化转换投影到屏幕空间。例如,具有200个维度的数据集可以被转换为中间4D表示,然后通过使用用于位置的二维和用于确定形状和颜色的二维来映射到屏幕空间。因此,可视化的数学基础与降维问题密切相关,降维是数据可视化的必要步骤,而可视化分析的最终目标是数据分析,如搜索,聚类和异常值检测。因此,迫切需要研究对数据分析特别有用的降维技术。这项研究涉及的线性和非线性降维算法的发展和实施的高维数据的转换和可视化。该变换的新颖之处在于,在联合框架中同时进行降维和聚类。此外,本研究还涉及基于多核学习(MKL)的多源数据转换新算法的开发和实现。这解决了融合大量独立收集的异构数据的问题。在过去,大多数关于MKL的研究都集中在监督学习上。这项研究的一个主要贡献是将MKL扩展到无监督的情况。这项研究将可视化分析作为机器学习理论基础和现实世界应用之间的桥梁。这项研究利用了两个试验数据库,一个由可能被情报界使用的印刷文件组成,另一个基于公共卫生信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jieping Ye其他文献
Context-Aware and Semantic-Consistent Spatial Interactions for One-Shot Object Detection Without Fine-Tuning
上下文感知和语义一致的空间交互,无需微调即可实现一次性目标检测
- DOI:
10.1109/tcsvt.2023.3349007 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hanqing Yang;Sijia Cai;Bing Deng;Jieping Ye;Guosheng Lin;Yu Zhang - 通讯作者:
Yu Zhang
Detection of number of components in CANDECOMP/PARAFAC models via minimum description length
通过最小描述长度检测 CANDECOMP/PARAFAC 模型中的组件数量
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kefei Liu;João Paulo Carvalho Lustosa da Costa;H. So;Lei Huang;Jieping Ye - 通讯作者:
Jieping Ye
IBD: Alleviating Hallucinations in Large Vision-Language Models via Image-Biased Decoding
IBD:通过图像偏向解码减轻大型视觉语言模型中的幻觉
- DOI:
10.48550/arxiv.2402.18476 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lanyun Zhu;Deyi Ji;Tianrun Chen;Peng Xu;Jieping Ye;Jun Liu - 通讯作者:
Jun Liu
Multi-feature sparse-based defect detection and classification in semiconductor units
半导体单元中基于多特征稀疏的缺陷检测和分类
- DOI:
10.1109/icip.2016.7532458 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bashar M. Haddad;Lina Karam;Jieping Ye;Nital S. Patel;Martin Oberkönig - 通讯作者:
Martin Oberkönig
Integrating Spatial and Discriminant Strength for Feature Selection and Linear Dimensionality Reduction
集成空间和判别强度以进行特征选择和线性降维
- DOI:
10.1109/cvprw.2006.104 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Qi Li;C. Kambhamettu;Jieping Ye - 通讯作者:
Jieping Ye
Jieping Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jieping Ye', 18)}}的其他基金
III: Small: Collaborative Research: Functional Network Discovery for Brain Connectivity
III:小:协作研究:大脑连接的功能网络发现
- 批准号:
1539722 - 财政年份:2015
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
III: Small: Large-Scale Structured Sparse Learning
III:小:大规模结构化稀疏学习
- 批准号:
1539991 - 财政年份:2015
- 资助金额:
$ 49.85万 - 项目类别:
Continuing Grant
CAREER: Dimensionality Reduction for Multi-Label Classification
职业:多标签分类的降维
- 批准号:
1538638 - 财政年份:2015
- 资助金额:
$ 49.85万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Functional Network Discovery for Brain Connectivity
III:小:协作研究:大脑连接的功能网络发现
- 批准号:
1421100 - 财政年份:2014
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
III: Small: Large-Scale Structured Sparse Learning
III:小:大规模结构化稀疏学习
- 批准号:
1421057 - 财政年份:2014
- 资助金额:
$ 49.85万 - 项目类别:
Continuing Grant
CAREER: Dimensionality Reduction for Multi-Label Classification
职业:多标签分类的降维
- 批准号:
0953662 - 财政年份:2010
- 资助金额:
$ 49.85万 - 项目类别:
Continuing Grant
SEI: Machine Learning Approaches for Biological Image Informatics
SEI:生物图像信息学的机器学习方法
- 批准号:
0612069 - 财政年份:2006
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
相似国自然基金
数学之源书(Source book in mathematics)的翻译与出版
- 批准号:11826405
- 批准年份:2018
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301410 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
- 批准号:
10088290 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Collaborative R&D
Textile waste as carbon source for redox flow battery electrodes
纺织废料作为氧化还原液流电池电极的碳源
- 批准号:
2901277 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Studentship
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
- 批准号:
2419995 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301405 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Continuing Grant
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Collaborative R&D
Flexible Air Source Heat pump for domestic heating decarbonisation (FASHION)
用于家庭供暖脱碳的灵活空气源热泵(时尚)
- 批准号:
EP/V042033/2 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Research Grant
Adaptive Multi-Source Transfer Learning Approaches for Environmental Challenges
应对环境挑战的自适应多源迁移学习方法
- 批准号:
EP/Y002539/1 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Research Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
- 批准号:
2338313 - 财政年份:2024
- 资助金额:
$ 49.85万 - 项目类别:
Standard Grant














{{item.name}}会员




