CAREER: Dimensionality Reduction for Multi-Label Classification

职业:多标签分类的降维

基本信息

  • 批准号:
    0953662
  • 负责人:
  • 金额:
    $ 40.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

Recent advances in high-throughput technologies have unleashed a torrent of data with a large number of dimensions. Examples include gene expression pattern images, microarray gene expression data, protein/gene sequences, and neuroimages. Dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information, is crucial for the analysis of these data. The goal of this project is to develop efficient and effective dimensionality reduction algorithms for multi-label classification. Multi-label dimensionality reduction poses a number of exciting research questions that will be studied in this project: How to fully exploit the class label correlation for effective dimensionality reduction? How to scale dimensionality reduction algorithms to large-scale multi-label problems? How to effectively combine dimensionality reduction with classification? How to derive sparse dimensionality reduction algorithms to enhance model interpretability? How to derive multi-label dimensionality reduction algorithms for multiple data sources? To address these questions, a hypergraph spectral learning formulation will be developed for multi-label dimensionality reduction, in which a hypergraph is used to capture the class label correlation. A joint learning formulation will be developed, in which dimensionality reduction and multi-label classification are performed simultaneously. In addition, a multi-source dimensionality reduction framework is developed for learning from multiple heterogeneous data sources. The success of this project will largely improve the state-of-the-art in dimensionality reduction for multi-label classification, and broaden this research area by opening up and addressing many new research themes. The algorithms and tools developed in this project will directly impact biological research, as they will be used to annotate FlyExpress images; FlyExpress is the only digital library of standardized fruit fly embryonic expression patterns. The educational component of this project includes developing a new curriculum that incorporates research into the classroom and provides students from under-represented groups with opportunities to participate research. Project results, including open source software and data sets will be disseminated via project Web site (http://www.public.asu.edu/~jye02/Project/CAREER).
高通量技术的最新进展释放了具有大量维度的数据洪流。例子包括基因表达模式图像、微阵列基因表达数据、蛋白质/基因序列和神经图像。降维是通过去除不相关、冗余和噪声信息来提取少量特征的方法,对这些数据的分析至关重要。本课题的目标是为多标签分类开发高效的降维算法。多标签降维提出了许多令人兴奋的研究问题,这些问题将在本项目中进行研究:如何充分利用类标签相关性进行有效降维?如何将降维算法扩展到大规模的多标签问题?如何有效地将降维与分类结合起来?如何推导稀疏降维算法来增强模型的可解释性?如何为多个数据源导出多标签降维算法?为了解决这些问题,将开发用于多标签降维的超图谱学习公式,其中使用超图来捕获类标签相关性。将开发一种联合学习公式,其中同时进行降维和多标签分类。此外,还开发了用于从多个异构数据源学习的多源降维框架。该项目的成功将极大地提高多标签分类降维技术的发展水平,并通过开辟和解决许多新的研究主题来拓宽这一研究领域。在这个项目中开发的算法和工具将直接影响生物学研究,因为它们将被用来注释FlyExpress的图像;FlyExpress是唯一一个标准化果蝇胚胎表达模式的数字图书馆。该项目的教育部分包括开发一种新的课程,将研究纳入课堂,并为来自代表性不足群体的学生提供参与研究的机会。项目结果,包括开放源码软件和数据集将通过项目网站(http://www.public.asu.edu/~jye02/Project/CAREER)传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jieping Ye其他文献

Context-Aware and Semantic-Consistent Spatial Interactions for One-Shot Object Detection Without Fine-Tuning
上下文感知和语义一致的空间交互,无需微调即可实现一次性目标检测
Detection of number of components in CANDECOMP/PARAFAC models via minimum description length
通过最小描述长度检测 CANDECOMP/PARAFAC 模型中的组件数量
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kefei Liu;João Paulo Carvalho Lustosa da Costa;H. So;Lei Huang;Jieping Ye
  • 通讯作者:
    Jieping Ye
IBD: Alleviating Hallucinations in Large Vision-Language Models via Image-Biased Decoding
IBD:通过图像偏向解码减轻大型视觉语言模型中的幻觉
  • DOI:
    10.48550/arxiv.2402.18476
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lanyun Zhu;Deyi Ji;Tianrun Chen;Peng Xu;Jieping Ye;Jun Liu
  • 通讯作者:
    Jun Liu
Multi-feature sparse-based defect detection and classification in semiconductor units
半导体单元中基于多特征稀疏的缺陷检测和分类
Integrating Spatial and Discriminant Strength for Feature Selection and Linear Dimensionality Reduction
集成空间和判别强度以进行特征选择和线性降维

Jieping Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jieping Ye', 18)}}的其他基金

III: Small: Collaborative Research: Functional Network Discovery for Brain Connectivity
III:小:协作研究:大脑连接的功能网络发现
  • 批准号:
    1539722
  • 财政年份:
    2015
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
III: Small: Large-Scale Structured Sparse Learning
III:小:大规模结构化稀疏学习
  • 批准号:
    1539991
  • 财政年份:
    2015
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Continuing Grant
CAREER: Dimensionality Reduction for Multi-Label Classification
职业:多标签分类的降维
  • 批准号:
    1538638
  • 财政年份:
    2015
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Functional Network Discovery for Brain Connectivity
III:小:协作研究:大脑连接的功能网络发现
  • 批准号:
    1421100
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
III: Small: Large-Scale Structured Sparse Learning
III:小:大规模结构化稀疏学习
  • 批准号:
    1421057
  • 财政年份:
    2014
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Continuing Grant
Multi-Source Visual Analytics
多源可视化分析
  • 批准号:
    1025177
  • 财政年份:
    2010
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
SEI: Machine Learning Approaches for Biological Image Informatics
SEI:生物图像信息学的机器学习方法
  • 批准号:
    0612069
  • 财政年份:
    2006
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant

相似海外基金

Extension and demonstration of two-particle-level computational theory based on dimensionality reduction to nonlocal electron correlation effects
基于降维非局域电子相关效应的双粒子级计算理论的推广与论证
  • 批准号:
    22KK0226
  • 财政年份:
    2023
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Sensitivity analysis on Deep Learning (DL)-based dimensionality reduction methods of scRNA-seq data
基于深度学习 (DL) 的 scRNA-seq 数据降维方法的敏感性分析
  • 批准号:
    572254-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.15万
  • 项目类别:
    University Undergraduate Student Research Awards
First-principles calculations of two-particle response realized by dimensionality reduction
降维实现双粒子响应的第一性原理计算
  • 批准号:
    21H01003
  • 财政年份:
    2021
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Clarification of Cool Flame Dynamics by Deep Learning as Dimensionality Reduction Technique
通过深度学习作为降维技术来阐明冷火焰动力学
  • 批准号:
    21K14347
  • 财政年份:
    2021
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Methods for Dimensionality Reduction ofSingle-Cell RNA-Sequencing Data
单细胞 RNA 测序数据降维的有效方法
  • 批准号:
    10356883
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
Dimensionality reduction and intrinsic dimension.
降维和内在维度。
  • 批准号:
    2431450
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Studentship
Analyzing the phase-space dynamics of 5D distribution functions using the dimensionality reduction technique
使用降维技术分析 5D 分布函数的相空间动力学
  • 批准号:
    20K14441
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A mathematical study of dimensionality reduction and embedding by theories of delay-coordinate systems and algebraic geometry
延迟坐标系和代数几何理论降维和嵌入的数学研究
  • 批准号:
    20K03747
  • 财政年份:
    2020
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
OAC Core: Small: Scalable Non-linear Dimensionality Reduction Methods to Accelerate Scientific Discovery
OAC 核心:小型:加速科学发现的可扩展非线性降维方法
  • 批准号:
    1910539
  • 财政年份:
    2019
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1841805
  • 财政年份:
    2018
  • 资助金额:
    $ 40.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了