Manifold Alignment of High-Dimensional Data Sets

高维数据集的流形对齐

基本信息

  • 批准号:
    1025120
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

As the availability and size of digital information repositories continues to burgeon, the problem of extracting deep semantic structure from high-dimensional data becomes more critical. This project addresses the fundamental problem of transfer learning, in particular it investigates methods for aligning multiple heterogeneous data sets to find correspondences and extract shared latent semantic structure. Domains of applicability include automatic machine translation, bioinformatics, cross-lingual information retrieval, perceptual learning, robotic control, and sensor-based activity modeling. The proposed research will investigate a geometric framework for transfer learning based on finding correspondences between data by aligning their projections onto lower dimensional manifolds. The proposed research will investigate a broad spectrum of approaches to manifold alignment, including one-step vs. two-step alignment, instance-based vs. feature-based alignment, semi-supervised vs. unsupervised alignment, and finally one-level vs. multi-scale alignment. Visualization tools that use alignment information will be developed to facilitate interactive learning from data analysis. To aid the processing of large data sets, the parallel computational power of modern graphics processing units (GPUs) will be exploited.Given the rapidly increasing availability of digital data sets from a diverse variety of domains, the scientific question of extracting knowledge from massive unstructured information repositories is becoming ever more critical. The proposed research combines the study of machine learning algorithms for discovering latent correspondences between seemingly disparate data sets, and the development of visualization tools to aid human interpretation of high-dimensional data. Empirical studies on a variety of real-world applications will be carried out, ranging from bioinformatics, Internet web archives, multilingual text, and sequential time-series data sets. The broader impacts of the proposed research include algorithmic advances in the analysis and visualization of high-dimensional data, and empirical studies on a variety of real-world applications. The data sets and software developed in this research will be disseminated through the web. The research will be communicated through a variety of conferences, workshops and seminars in several disciplines ranging from computer science, engineering, mathematics, and statistics. The PIs will make significant efforts to recruit underrepresented groups, including women and other minorities, in this research. New course material on advanced data analysis and visualization will be developed based on the proposed research.
随着数字信息仓库的可用性和规模不断扩大,从高维数据中提取深层语义结构的问题变得更加关键。该项目解决了迁移学习的基本问题,特别是它研究了对齐多个异构数据集以找到对应关系并提取共享潜在语义结构的方法。适用领域包括自动机器翻译、生物信息学、跨语言信息检索、感知学习、机器人控制和基于传感器的活动建模。 拟议的研究将研究迁移学习的几何框架,该框架基于通过将数据投影对齐到低维流形上来寻找数据之间的对应关系。拟议的研究将调查各种各样的方法来流形对齐,包括一步与两步对齐,基于实例与基于特征的对齐,半监督与无监督对齐,最后是一级与多尺度对齐。将开发使用对齐信息的可视化工具,以促进数据分析的交互式学习。为了帮助处理大型数据集,现代图形处理单元(GPU)的并行计算能力将被利用。鉴于来自各种领域的数字数据集的可用性迅速增加,从大量非结构化信息库中提取知识的科学问题变得越来越重要。拟议的研究结合了机器学习算法的研究,用于发现看似不同的数据集之间的潜在对应关系,以及可视化工具的开发,以帮助人类解释高维数据。 将对各种实际应用进行实证研究,包括生物信息学、互联网网络档案、多语种文本和连续时间序列数据集。拟议研究的更广泛影响包括高维数据分析和可视化的算法进步,以及对各种现实应用的实证研究。在这项研究中开发的数据集和软件将通过网络传播。该研究将通过各种会议,研讨会和研讨会在几个学科,从计算机科学,工程,数学和统计沟通。研究所将作出重大努力,在这项研究中招募代表性不足的群体,包括妇女和其他少数民族。 新的课程材料先进的数据分析和可视化将开发基于拟议的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sridhar Mahadevan其他文献

Privacy Aware Experiments without Cookies
没有 Cookie 的隐私意识实验
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiv Shankar;Ritwik Sinha;Saayan Mitra;Viswanathan Swaminathan;Sridhar Mahadevan;Moumita Sinha
  • 通讯作者:
    Moumita Sinha
C ATEGOROIDS : U NIVERSAL C ONDITIONAL I NDEPENDENCE
类别:普遍有条件独立
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Preprint;Sridhar Mahadevan
  • 通讯作者:
    Sridhar Mahadevan
Categoroids: Universal Conditional Independence
类别:普遍条件独立性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sridhar Mahadevan
  • 通讯作者:
    Sridhar Mahadevan
Reconfigurable adaptable micro-robot
可重构的适应性微型机器人
Quantifying Prior Determination Knowledge Using the PAC Learning Model
  • DOI:
    10.1023/a:1022605018507
  • 发表时间:
    1994-10-01
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Sridhar Mahadevan;Prasad Tadepalli
  • 通讯作者:
    Prasad Tadepalli

Sridhar Mahadevan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sridhar Mahadevan', 18)}}的其他基金

Collaborative Research: Transfer Learning for Chemical Analyses from Laser-Induced Spectroscopy
合作研究:激光诱导光谱化学分析的迁移学习
  • 批准号:
    1307179
  • 财政年份:
    2013
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
RI: Small: Reinforcement Learning by Mirror Descent
RI:小:通过镜像下降的强化学习
  • 批准号:
    1216467
  • 财政年份:
    2012
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
NeTS Small: Analysis and Design of Best-Effort Content-Caching Networks
NeTS Small:尽力而为内容缓存网络的分析和设计
  • 批准号:
    1117764
  • 财政年份:
    2011
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
RI-Medium: Collaborative Research: Learning Multiscale Representations using Harmonic Analysis on Graphs
RI-Medium:协作研究:使用图的调和分析学习多尺度表示
  • 批准号:
    0803288
  • 财政年份:
    2008
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Proto-Value Functions: A Unified Framework for Learning Task-Specific Behaviors and Task-Independent Representations
原始价值函数:学习任务特定行为和任务无关表示的统一框架
  • 批准号:
    0534999
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Scaling Reinforcement Learning by Adaptive Task Selection and Linear Solution Merging
通过自适应任务选择和线性解决方案合并扩展强化学习
  • 批准号:
    9896122
  • 财政年份:
    1997
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Scaling Reinforcement Learning by Adaptive Task Selection and Linear Solution Merging
通过自适应任务选择和线性解决方案合并扩展强化学习
  • 批准号:
    9501852
  • 财政年份:
    1995
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
Support for a Workshop on Reinforcement Learning
支持强化学习研讨会
  • 批准号:
    9529108
  • 财政年份:
    1995
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似国自然基金

序列比对( Alignment)的随机分析与快速算法
  • 批准号:
    10271061
  • 批准年份:
    2002
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
  • 批准号:
    2327411
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Dynamic, high impact micro-optic security films using automated, high precision alignment between micro-lenses and micro-images
动态、高冲击力的微光学安全薄膜,采用微透镜和微图像之间的自动化、高精度对准
  • 批准号:
    10076760
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Collaborative R&D
Elucidation of Mechanisms for Improvement of Myocardial Tissue Function by Cardiomyocytes Alignment Control
阐明通过心肌细胞排列控制改善心肌组织功能的机制
  • 批准号:
    23K15142
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reconsideration of a 3-D sintering model by numerical analysis of shape and alignment parameters of metal powders during the sintering process
通过对烧结过程中金属粉末的形状和排列参数进行数值分析来重新考虑 3D 烧结模型
  • 批准号:
    23K04439
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examining vertical alignment in perceived implementation climate within a trial of motivational interviewing in substance use disorder treatment clinics
在物质使用障碍治疗诊所的动机访谈试验中检查感知实施氛围的垂直一致性
  • 批准号:
    10680338
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
Assembly and re-alignment of HLA genomic region and its implication for fine-mapping suicidality in African descent population
HLA基因组区域的组装和重新排列及其对非洲人后裔自杀倾向精细定位的意义
  • 批准号:
    10797122
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
Planning: PREC: Exploring a Partnership between Historically Black Universities in the District of Columbia and NSF's ChemMatCARS in Alignment with the NSF PREC Program
规划:PREC:探索哥伦比亚特区历史悠久的黑人大学与 NSF ChemMatCARS 之间的合作伙伴关系,与 NSF PREC 计划保持一致
  • 批准号:
    2334957
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CRII: III: Measuring the alignment between the interests of local communities, local news, and the national news media
CRII:III:衡量当地社区、当地新闻和国家新闻媒体利益之间的一致性
  • 批准号:
    2245508
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Pathophysiology determination of peri-implantitis based on macrophage hierarchy and regulation of tissue alignment
基于巨噬细胞层次结构和组织排列调节的种植体周围炎的病理生理学测定
  • 批准号:
    23H03093
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
III: Medium: Towards Inclusive Recommendation Systems with Stakeholder Alignment
III:中:迈向利益相关者联盟的包容性推荐系统
  • 批准号:
    2312794
  • 财政年份:
    2023
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了