Collaborative Research: Transfer Learning for Chemical Analyses from Laser-Induced Spectroscopy
合作研究:激光诱导光谱化学分析的迁移学习
基本信息
- 批准号:1307179
- 负责人:
- 金额:$ 15.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurements and Imaging program, Professors Melinda Dyar of Mt. Holyoke College and Sridhar Mahadevan of University of Massachusetts at Amherst and their students will use laser-induced breakdown spectroscopy (LIBS) measurements, including laboratory investigations of standard materials at varying experimental conditions, to develop numerical methods that will address limitations to the broad application of LIBS imposed by matrix effects and plasma variability. State-of-the-art dimensionality reduction and transfer learning methods from machine learning and statistics will be used to build innovative LIBS-based predictive models. These investigations will extend classical methods in statistics for dealing with multiple paired data sets, such as canonical correlational analysis, to deal with unlabeled data, and extract nonlinear low-dimensional regularities in the data. The project includes the design of a suite of model-building tools that can deal with a range of problems and optimization objectives, including different types of correspondence information available across datasets, diversity of global objectives ranging from preserving local to global geometry, and producing linear or nonlinear mappings to lower-dimensional factors. Laser-induced breakdown spectroscopy (LIBS) is a chemical analysis tool that uses the light emitted by a sample when a focused laser pulse generates a plasma at the sample surface. LIBS has a number of features that make it particularly useful for field use, including rapid analysis, minimal sample preparation and suitability for stand-off, that is remote, detection. Moreover, LIBS can detect and quantify light elements that are not always measured using other methods. Consequently, LIBS is well-suited to many applications including, defense interests (e.g., military explosive detection, illegal drug detection, airport security), in-situ analysis of archeological sites, field work at hazardous waste sites, and geological resource exploration. However, utilization of LIBS measurements is limited by signal variability with measurement and sample conditions. This project launches an integrated research program to couple state of the art LIBS instrumentation at Mount Holyoke College to equally state of the art numerical methodology in artificial intelligence and machine learning at the nearby University of Massachusetts to increase the utility of LIBS measurements. This project will provide an interdisciplinary training environment that includes undergraduate, graduate and post-doctoral researchers.
在化学测量和成像项目的支持下,霍利奥克山学院的Melinda Dyar教授和马萨诸塞大学阿默斯特分校的Sridhar Mahadevan教授及其学生将使用激光诱导击穿光谱(LIBS)测量,包括在不同实验条件下对标准材料的实验室研究,开发数值方法,以解决矩阵效应和等离子体变变性对LIBS广泛应用的限制。来自机器学习和统计学的最先进的降维和迁移学习方法将用于构建创新的基于lib的预测模型。这些研究将扩展统计学中用于处理多成对数据集的经典方法,如典型相关分析,以处理未标记数据,并提取数据中的非线性低维规律。该项目包括设计一套模型构建工具,这些工具可以处理一系列问题和优化目标,包括跨数据集可用的不同类型的对应信息,从保留局部到全局几何形状的全局目标的多样性,以及生成到低维因素的线性或非线性映射。激光诱导击穿光谱(LIBS)是一种化学分析工具,它利用聚焦激光脉冲在样品表面产生等离子体时样品发出的光。LIBS具有许多功能,使其对现场使用特别有用,包括快速分析,最少的样品制备和适合远距离检测。此外,LIBS可以检测和量化其他方法无法测量的轻元素。因此,LIBS非常适合许多应用,包括国防利益(例如,军事爆炸探测,非法毒品探测,机场安全),考古遗址的现场分析,危险废物现场工作和地质资源勘探。然而,LIBS测量的利用受到测量和样品条件下信号可变性的限制。该项目启动了一个综合研究计划,将Mount Holyoke学院最先进的LIBS仪器与附近马萨诸塞大学人工智能和机器学习领域同样先进的数值方法结合起来,以提高LIBS测量的效用。该项目将提供一个跨学科的培训环境,包括本科生、研究生和博士后研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sridhar Mahadevan其他文献
Privacy Aware Experiments without Cookies
没有 Cookie 的隐私意识实验
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shiv Shankar;Ritwik Sinha;Saayan Mitra;Viswanathan Swaminathan;Sridhar Mahadevan;Moumita Sinha - 通讯作者:
Moumita Sinha
C ATEGOROIDS : U NIVERSAL C ONDITIONAL I NDEPENDENCE
类别:普遍有条件独立
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Preprint;Sridhar Mahadevan - 通讯作者:
Sridhar Mahadevan
Categoroids: Universal Conditional Independence
类别:普遍条件独立性
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sridhar Mahadevan - 通讯作者:
Sridhar Mahadevan
Reconfigurable adaptable micro-robot
可重构的适应性微型机器人
- DOI:
10.1109/icsmc.1999.816634 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
R. Tummala;Ranjan Mukherjee;D. M. Aslam;Ning Xi;Sridhar Mahadevan;J. Weng - 通讯作者:
J. Weng
Quantifying Prior Determination Knowledge Using the PAC Learning Model
- DOI:
10.1023/a:1022605018507 - 发表时间:
1994-10-01 - 期刊:
- 影响因子:2.900
- 作者:
Sridhar Mahadevan;Prasad Tadepalli - 通讯作者:
Prasad Tadepalli
Sridhar Mahadevan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sridhar Mahadevan', 18)}}的其他基金
RI: Small: Reinforcement Learning by Mirror Descent
RI:小:通过镜像下降的强化学习
- 批准号:
1216467 - 财政年份:2012
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
NeTS Small: Analysis and Design of Best-Effort Content-Caching Networks
NeTS Small:尽力而为内容缓存网络的分析和设计
- 批准号:
1117764 - 财政年份:2011
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Manifold Alignment of High-Dimensional Data Sets
高维数据集的流形对齐
- 批准号:
1025120 - 财政年份:2010
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
RI-Medium: Collaborative Research: Learning Multiscale Representations using Harmonic Analysis on Graphs
RI-Medium:协作研究:使用图的调和分析学习多尺度表示
- 批准号:
0803288 - 财政年份:2008
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Proto-Value Functions: A Unified Framework for Learning Task-Specific Behaviors and Task-Independent Representations
原始价值函数:学习任务特定行为和任务无关表示的统一框架
- 批准号:
0534999 - 财政年份:2006
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Scaling Reinforcement Learning by Adaptive Task Selection and Linear Solution Merging
通过自适应任务选择和线性解决方案合并扩展强化学习
- 批准号:
9896122 - 财政年份:1997
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Scaling Reinforcement Learning by Adaptive Task Selection and Linear Solution Merging
通过自适应任务选择和线性解决方案合并扩展强化学习
- 批准号:
9501852 - 财政年份:1995
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Support for a Workshop on Reinforcement Learning
支持强化学习研讨会
- 批准号:
9529108 - 财政年份:1995
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327571 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2232875 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
- 批准号:
2230593 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219795 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
- 批准号:
2327572 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Continuing Grant