Collaborative Research: Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative Behavior

合作研究:计算行为科学:社交和交流行为的建模、分析和可视化

基本信息

  • 批准号:
    1029430
  • 负责人:
  • 金额:
    $ 74.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative BehaviorLead PI/Institution: James M. Rehg, Georgia Institute of TechnologyThis Expedition will develop novel computational methods for measuring and analyzing the behavior of children and adults during face-to-face social interactions. Social behavior plays a key role in the acquisition of social and communicative skills during childhood. Children with developmental disorders, such as autism, face great challenges in acquiring these skills, resulting in substantial lifetime risks. Current best practices for evaluating behavior and assessing risk are based on direct observation by highly-trained specialists, and cannot be easily scaled to the large number of individuals who need evaluation and treatment. For example, autism affects 1 in 110 children in the U.S., with a lifetime cost of care of $3.2 million per person. By developing methods to automatically collect fine-grained behavioral data, this project will enable large-scale objective screening and more effective delivery and assessment of therapy. Going beyond the treatment of disorders, this technology will make it possible to automatically measure behavior over long periods of time for large numbers of individuals in a wide range of settings. Many disciplines, such as education, advertising, and customer relations, could benefit from a quantitative, data-drive approach to behavioral analysis. Human behavior is inherently multi-modal, and individuals use eye gaze, hand gestures, facial expressions, body posture, and tone of voice along with speech to convey engagement and regulate social interactions. This project will develop multiple sensing technologies, including vision, speech, and wearable sensors, to obtain a comprehensive, integrated portrait of expressed behavior. Cameras and microphones provide an inexpensive, noninvasive means for measuring eye, face, and body movements along with speech and nonspeech utterances. Wearable sensors can measure physiological variables such as heart-rate and skin conductivity, which contain important cues about levels of internal stress and arousal that are linked to expressed behavior. This project is developing unique capabilities for synchronizing multiple sensor streams, correlating these streams to measure behavioral variables such as affect and attention, and modeling extended interactions between two or more individuals. In addition, novel behavior visualization methods are being developed to enable real-time decision support for interventions and the effective use of repositories of behavioral data. Methods are also under development for reflecting the capture and analysis process to users of the technology.The long-term goal of this project is the creation of a new scientific discipline of computational behavioral science, which draws equally from computer science and psychology in order to transform the study of human behavior. A comprehensive education plan supports this goal through the creation of an interdisciplinary summer school for young researchers and the development of new courses in computational behavior. Outreach activities include significant and on-going collaborations with major autism research centers in Atlanta, Boston, Pittsburgh, Urbana-Champaign, and Los Angeles.
计算行为科学:社会和交际行为的建模、分析和可视化。格鲁吉亚理工学院的ESTA远征将开发新的计算方法,用于测量和分析儿童和成人在面对面的社会交往中的行为。社会行为在儿童时期社会和沟通技能的获得中起着关键作用。患有自闭症等发育障碍的儿童在获得这些技能方面面临巨大挑战,导致终身风险很大。目前用于评估行为和评估风险的最佳实践是基于训练有素的专家的直接观察,并且不能容易地扩展到需要评估和治疗的大量个体。例如,在美国,每110名儿童中就有1名患有自闭症,每人一生的护理费用为320万美元。通过开发自动收集细粒度行为数据的方法,该项目将实现大规模的客观筛查和更有效的治疗交付和评估。除了治疗疾病之外,这项技术还可以在广泛的环境中自动测量大量个体的长期行为。许多学科,如教育、广告和客户关系,都可以从定量的、数据驱动的行为分析方法中受益。人类行为本质上是多模态的,个体使用眼睛凝视、手势、面部表情、身体姿势和语音语调沿着言语来传达参与和调节社会互动。 该项目将开发多种传感技术,包括视觉,语音和可穿戴传感器,以获得表达行为的全面,综合的肖像。摄像机和麦克风提供了一种廉价的、非侵入性的手段,用于测量眼睛、面部和身体的运动沿着语音和非语音话语。可穿戴传感器可以测量心率和皮肤电导率等生理变量,这些变量包含与表达行为相关的内部压力和唤醒水平的重要线索。该项目正在开发同步多个传感器流的独特功能,将这些流关联起来以测量行为变量,如影响和注意力,并对两个或多个个体之间的扩展交互进行建模。此外,正在开发新的行为可视化方法,以实现干预措施的实时决策支持和行为数据库的有效使用。该项目的长期目标是创建一个新的科学学科--计算行为科学,它从计算机科学和心理学中平等地汲取知识,以改变人类行为的研究。一个全面的教育计划通过为年轻研究人员创建跨学科暑期学校和开发计算行为新课程来支持这一目标。外展活动包括与亚特兰大、波士顿、匹兹堡、厄巴纳-香槟和洛杉矶的主要自闭症研究中心进行重大和持续的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stan Sclaroff其他文献

On modal modeling for medical images: underconstrained shape description and data compression
医学图像模态建模:欠约束形状描述和数据压缩

Stan Sclaroff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stan Sclaroff', 18)}}的其他基金

II-EN: Infrastructure for Gesture Interface Research Outside the Lab
II-EN:实验室外手势界面研究基础设施
  • 批准号:
    0855065
  • 财政年份:
    2009
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
HCC: Large Lexicon Gesture Representation, Recognition, and Retrieval
HCC:大型词典手势表示、识别和检索
  • 批准号:
    0705749
  • 财政年份:
    2007
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing Grant
RI: Parameter-Sensitive and Dynamics-Aware Methods for Object Detection, Pose Estimation, and Tracking
RI:用于对象检测、姿态估计和跟踪的参数敏感和动态感知方法
  • 批准号:
    0713168
  • 财政年份:
    2007
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing Grant
Mining and Indexing Spatio-Temporal Patterns in Video Databases of Human Motion
人体运动视频数据库中的时空模式挖掘和索引
  • 批准号:
    0308213
  • 财政年份:
    2003
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing Grant
Estimating and Recognizing 3D Articulated Motion via Uncalibrated Cameras
通过未校准的相机估计和识别 3D 关节运动
  • 批准号:
    0208876
  • 财政年份:
    2002
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing Grant
REU/ CAREER: Deformable Shape Models for Image Understanding
REU/ CAREER:用于图像理解的可变形形状模型
  • 批准号:
    9624168
  • 财政年份:
    1996
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing grant
CISE Research Infrastructure: Research Infrastructure for Parallel and Distributed Systems: Real-Time, Multimedia, and High-Performance
CISE 研究基础设施:并行和分布式系统的研究基础设施:实时、多媒体和高性能
  • 批准号:
    9623865
  • 财政年份:
    1996
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Arecibo C3 - Center for Culturally Relevant and Inclusive Science Education, Computational Skills, and Community Engagement
合作研究:Arecibo C3 - 文化相关和包容性科学教育、计算技能和社区参与中心
  • 批准号:
    2321759
  • 财政年份:
    2023
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了