HCC: Large Lexicon Gesture Representation, Recognition, and Retrieval
HCC:大型词典手势表示、识别和检索
基本信息
- 批准号:0705749
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is estimated that American Sign Language (ASL) is used by up to 2 million people in the United States. Yet many resources that are taken for granted by users of spoken languages are not available to users of ASL, given its visual nature and its lack of a standard written form. For instance, when an ASL user encounters an unknown sign, looking it up in a dictionary is not an option. With existing ASL dictionaries one can easily find what sign corresponds to an English word, but not what English word (or, more generally, what meaning) corresponds to a given sign. Another example is searching for computer files or web pages using keywords, which is now a frequent activity for computer users. At present, no equivalent for keyword search exists for ASL. ASL is not a written language, and the closest equivalent of a text document is a video sequence of ASL narration or communication. No tools are currently available for finding video segments in which specific signs occur. The lack of such tools severely restricts content-based access to video libraries of ASL literature, lore, poems, performances, or courses. The core goal of this research is to push towards making such resources available, by advancing the state-of-the-art in vision-based gesture recognition and retrieval. This poses challenging research problems in the areas of computer vision, machine learning, and database indexing. The effort will focus on the following: developing methods for learning models of sign classes, given only a few training examples per sign, by using a decomposition of signs into phonological elements; designing scalable indexing methods for video lexicons of gestural languages that achieve sign recognition at interactive speeds, in the presence of thousands of classes; creating indexing methods for spotting signs appearing in context in an ASL video database; incorporating linguistic constraints to improve performance of both lower-level vision modules, such as hand pose estimation and upper body tracking, and higher-level learning and indexing modules; and explicitly designing methods that can work with error-prone vision modules that often provide inaccurate or ambiguous outputs. The PIs will create two demonstration systems: an ASL lexicon containing a comprehensive database of ASL signs; and a "Sign Language Google" that can search for specific signs in large databases of ASL video content. The systems will be trained and evaluated using thousands of video sequences of signs performed in isolation and in context by native ASL signers. This usage data will be valuable for studying co-articulation effects and context-dependent sign variations. The signs collected will include the full list of ASL signs appearing in the first three years of standard college ASL curricula.Broader Impacts: The methods developed in this project will enable sign-based search of ASL literature, lore, poems, performances, courses, from digital video libraries and DVDs, a capability which will have far-reaching implications for improving education, opportunities, and access for the deaf. These algorithms also aim to enable video-based queries of ASL lexicons, and eventually full-fledged dictionaries with metalinguistic information about signs and examples of usage. By enabling those learning ASL to "look up" a sign they do not know, this technology promises to transform the way students of ASL (both deaf and hearing), parents of deaf children, sign language interpreters, and linguists learn about signs they encounter. The algorithms developed in this effort may well lead to more robust ASL recognition systems, which can handle natural signing with a large lexicon of signs and the technology will also advance the state of the art in gesture recognition and synthesis systems. The large linguistically annotated corpus of native ASL produced as part of this effort will itself be an important resource.
据估计,美国手语(ASL)在美国有多达200万人使用。 然而,由于手语的视觉性质和缺乏标准的书面形式,口语使用者认为理所当然的许多资源对手语使用者来说是不可用的。 例如,当一个ASL用户遇到一个未知的符号时,在字典中查找它不是一个选择。 使用现有的美国手语词典,人们可以很容易地找到什么符号对应于一个英语单词,但不知道什么英语单词(或者更一般地说,什么意思)对应于一个给定的符号。 另一个例子是使用关键字搜索计算机文件或网页,这现在是计算机用户的频繁活动。 目前,ASL没有与关键词搜索等效的搜索。 美国手语不是一种书面语言,与文本文档最接近的等价物是美国手语叙述或交流的视频序列。 目前没有工具可用于查找出现特定标志的视频片段。 缺乏这样的工具严重限制了对美国手语文学、传说、诗歌、表演或课程的视频库的基于内容的访问。 这项研究的核心目标是通过推进基于视觉的手势识别和检索的最新技术,推动这些资源的可用性。 这在计算机视觉、机器学习和数据库索引领域提出了具有挑战性的研究问题。 这项工作将侧重于以下方面:通过将符号分解为语音要素,在每个符号只有几个训练实例的情况下,开发符号类学习模型的方法;为手势语言视频词典设计可伸缩的索引方法,在有数千个类的情况下,以交互速度实现符号识别;结合语言约束以改进诸如手姿势估计和上身跟踪的较低级别视觉模块以及较高级别学习和索引模块的性能;并明确设计可以与经常提供不准确或模糊输出的易出错视觉模块一起工作的方法。 PI将创建两个演示系统:一个包含手语符号综合数据库的手语词典;以及一个“手语谷歌”,可以在手语视频内容的大型数据库中搜索特定符号。 这些系统将使用数千个视频序列进行训练和评估,这些视频序列是由本地ASL签名者在隔离和上下文中执行的。 这些使用数据对于研究协同发音效应和上下文相关的符号变化将是有价值的。 收集的标志将包括出现在第一个三年的标准大学ASL courses.Broader影响的ASL标志的完整列表:在这个项目中开发的方法将使手语文献,传说,诗歌,表演,课程,从数字视频图书馆和DVD,这将有深远的影响,改善教育,机会和访问聋人的能力。 这些算法还旨在实现基于视频的ASL词典查询,并最终实现具有关于符号和用法示例的元语言信息的成熟词典。 通过使那些学习美国手语的人能够“查找”他们不知道的符号,这项技术有望改变美国手语学生(聋人和听力)、聋哑儿童的父母、手语翻译和语言学家学习他们遇到的符号的方式。 在这项工作中开发的算法很可能会导致更强大的ASL识别系统,它可以处理自然的签名与一个大词典的标志,该技术也将推进手势识别和合成系统的最新技术。 作为这一努力的一部分,产生的大量带有语言注释的本土美国手语语料库本身将是一个重要的资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stan Sclaroff其他文献
On modal modeling for medical images: underconstrained shape description and data compression
医学图像模态建模:欠约束形状描述和数据压缩
- DOI:
10.1109/bia.1994.315864 - 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Stan Sclaroff;Alex Pentland - 通讯作者:
Alex Pentland
Stan Sclaroff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stan Sclaroff', 18)}}的其他基金
Collaborative Research: Computational Behavioral Science: Modeling, Analysis, and Visualization of Social and Communicative Behavior
合作研究:计算行为科学:社交和交流行为的建模、分析和可视化
- 批准号:
1029430 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
II-EN: Infrastructure for Gesture Interface Research Outside the Lab
II-EN:实验室外手势界面研究基础设施
- 批准号:
0855065 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Parameter-Sensitive and Dynamics-Aware Methods for Object Detection, Pose Estimation, and Tracking
RI:用于对象检测、姿态估计和跟踪的参数敏感和动态感知方法
- 批准号:
0713168 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Mining and Indexing Spatio-Temporal Patterns in Video Databases of Human Motion
人体运动视频数据库中的时空模式挖掘和索引
- 批准号:
0308213 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Estimating and Recognizing 3D Articulated Motion via Uncalibrated Cameras
通过未校准的相机估计和识别 3D 关节运动
- 批准号:
0208876 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
REU/ CAREER: Deformable Shape Models for Image Understanding
REU/ CAREER:用于图像理解的可变形形状模型
- 批准号:
9624168 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
CISE Research Infrastructure: Research Infrastructure for Parallel and Distributed Systems: Real-Time, Multimedia, and High-Performance
CISE 研究基础设施:并行和分布式系统的研究基础设施:实时、多媒体和高性能
- 批准号:
9623865 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
- 批准号:
DP240102450 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
- 批准号:
2334171 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant