Collaborative Research: Fundamentals of Convex Mixed Integer Nonlinear Programming
协作研究:凸混合整数非线性规划基础
基本信息
- 批准号:1030662
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Convex Mixed Integer Nonlinear Programming (MINLP) presents many possibilities for modeling many classes of complex real world engineering and business optimization problems. However, there are no universally effective general purpose convex MINLP solvers such as those available for Mixed Integer Linear Programming (MILP). The research objective of this project is to broaden the scope of the following key results known for MILP to the more general domain of convex MINLP: (i) Generalize representation theorems for the convex hull of feasible solutions. (ii) Study properties of the value functions (such as subadditivity) of convex MINLPs. (iii) Investigate the possibility of constructing strong duals. (iv) Analyze the potential of using subadditive valid inequalities as cutting planes. (v) Examine the properties of elementary cutting plane closures such as Chvatal-Gomory and Split closure. In the case of MILP, the above mentioned results are central to cutting plane theory, a key ingredient in successful solvers. Moreover, understanding value functions and strong duals are important in the context of sensitivity analysis and stochastic versions of MILP. Therefore, if this project is successful, the results from this proposal will help in making a positive impact in designing practical algorithms for MINLPs. In particular, since many of the questions mentioned above are related to representation and cutting planes, positive results should help the development of faster branch-and-cut algorithms for convex MINLP.
凸混合非线性规划(MINLP)为建模许多类复杂的真实的世界工程和商业优化问题提供了许多可能性。然而,没有普遍有效的通用凸MINLP求解器,如那些可用于混合线性规划(MILP)。本项目的研究目标是将MILP的以下主要结果扩展到更一般的凸MINLP领域:(i)推广可行解的凸船体的表示定理。(ii)研究凸MINLP的值函数的性质(如次可加性)。(iii)探讨构建强有力的可持续发展体系的可能性。(iv)分析次可加有效不等式作为割平面的可能性。(v)检查基本割平面闭包的性质,如Chvatal-Gomory闭包和Split闭包。 在MILP的情况下,上述结果是中央切割平面理论,在成功的求解器的关键成分。此外,理解价值函数和强可检验性在敏感性分析和随机版本的MILP中是重要的。因此,如果这个项目是成功的,从这个建议的结果将有助于在设计实用的算法MINLP的积极影响。特别是,由于上述许多问题都与表示和切割平面,积极的结果应该有助于开发更快的分支和切割算法凸MINLP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Pablo Vielma其他文献
Shapes and recession cones in mixed-integer convex representability
- DOI:
10.1007/s10107-023-01946-4 - 发表时间:
2023-03-30 - 期刊:
- 影响因子:2.500
- 作者:
Ilias Zadik;Miles Lubin;Juan Pablo Vielma - 通讯作者:
Juan Pablo Vielma
Improving computational capabilities for addressing volume constraints in forest harvest scheduling problems
- DOI:
10.1016/j.ejor.2005.09.016 - 发表时间:
2007-01-16 - 期刊:
- 影响因子:
- 作者:
Juan Pablo Vielma;Alan T. Murray;David M. Ryan;Andres Weintraub - 通讯作者:
Andres Weintraub
Juan Pablo Vielma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Pablo Vielma', 18)}}的其他基金
CAREER: Advanced Mixed Integer Programming Formulations
职业:高级混合整数规划公式
- 批准号:
1351619 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Rethinking the Fundamentals of Tunneling Technologies for Security, Privacy, and Usability
协作研究:SaTC:核心:中:重新思考隧道技术的安全性、隐私性和可用性的基础知识
- 批准号:
2141512 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Gamified Learning of Computing Hardware Fundamentals
协作研究:计算硬件基础知识的游戏化学习
- 批准号:
2142696 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
- 批准号:
2210254 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Gamified Learning of Computing Hardware Fundamentals
协作研究:计算硬件基础知识的游戏化学习
- 批准号:
2142473 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Rethinking the Fundamentals of Tunneling Technologies for Security, Privacy, and Usability
协作研究:SaTC:核心:中:重新思考隧道技术的安全性、隐私性和可用性的基础知识
- 批准号:
2141547 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: NeTS: JUNO3: Towards an Internet of Federated Digital Twins (IoFDT) for Society 5.0: Fundamentals and Experimentation
合作研究:NetS:JUNO3:迈向社会 5.0 的联合数字孪生 (IoFDT) 互联网:基础知识和实验
- 批准号:
2210255 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: LARGE: AI-Enabled Spectrum Coexistence between Active Communications and Passive Radio Services: Fundamentals, Testbed and Data
合作研究:SWIFT:大型:主动通信和无源无线电服务之间人工智能支持的频谱共存:基础知识、测试平台和数据
- 批准号:
2202972 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
- 批准号:
2106602 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Localization in Millimeter Wave Cellular Networks: Fundamentals, Algorithms, and Measurement-inspired Simulator
合作研究: CNS 核心:媒介:毫米波蜂窝网络的本地化:基础知识、算法和测量启发的模拟器
- 批准号:
2107276 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2150486 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




