SDCI Data: Improvement: Java Graphical Authorship Attribution Program (JGAAP)

SDCI 数据:改进:Java 图形作者归属计划 (JGAAP)

基本信息

  • 批准号:
    1032683
  • 负责人:
  • 金额:
    $ 162.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Recent developments in machine learning and corpus linguistics have shown it to be possible to make automatic determinations about authorship using statistics; the NSF- funded JGAAP (Java Graphical Authorship Attribution Program) system has been part of these developments. JGAAP has helped support the emerging authorship attribution community and create a useful tool for a wide variety of scholastic specialties. Although JGAAP incorporates thousands of possible methods, there are many more in the literature that have been proposed but not rigorously tested. Comparative testing on a large scale will require the development of new methods and test corpora. In addition, there are many key problems to address to meet the needs of the community, such as the open class problem, the adversarial problem, and the coauthorship problem. Finally, we will examine applications of JGAAP and similar systems to key areas in linguistic profiling, such as determining gender, education, native language, psychological profile, medical condition, age (of document or writer), or even attempted deceptiveness. Again, by applying a rigorous testing method to these new problems and corpora, the project can establish accuracy benchmarks for various techniques (under the various testing conditions), find new combinations resulting in improved techniques, and establish a recommendation for 'best practices.' Improved authorship attribution will be immediately useful both to scholars and in broader social contexts, such as law enforcement and forensics where there are direct demands for this kind of security technology. The historical/social analysis will also provide better access between the related disciplines of digital humanities, sociology, history, and computer science, providing the basis for a better understanding of traditional humanities issues. Profiling work can help medical and psychological practitioners by providing a non-invasive method to detect certain aspects of a person's mind. The software developed (and the planned development/distribution process) will help improve the effectiveness of both digital humanities scholarship and computer science, especially through the establishment of software review standards and processes. In particular, by providing direct evidence of the conditions and expected error rates involved in various techniques, the information gained will help authorship attribution meet the Daubert criteria for expert evidence, allowing authorship attribution to be used in a formal legal setting. Finally, the funding of this research will help support the unique interdisciplinary Duquesne University Computational Mathematics program, providing a broader access to an unusual and atypical audience for technological education.
机器学习和语料库语言学的最新发展表明,使用统计数据自动确定作者身份是可能的; NSF资助的JGAAP(Java图形作者归属程序)系统是这些发展的一部分。 JGAAP帮助支持新兴的作者归属社区,并为各种学术专业创造了有用的工具。虽然JGAAP包含了数千种可能的方法,但文献中还有更多的方法已经提出,但没有经过严格的测试。大规模的比较测试需要开发新的方法和测试语料库。此外,还有许多关键问题需要解决,以满足社区的需求,如公开课问题,对抗性问题和合作问题。最后,我们将研究JGAAP和类似系统在语言特征分析关键领域的应用,例如确定性别,教育,母语,心理特征,医疗条件,年龄(文件或作者),甚至是企图欺骗。 同样,通过对这些新问题和语料库应用严格的测试方法,该项目可以为各种技术(在各种测试条件下)建立准确性基准,找到导致改进技术的新组合,并建立“最佳实践”的建议。“改进的作者归属将立即对学者和更广泛的社会背景有用,例如对这种安全技术有直接需求的执法和法医。历史/社会分析还将提供数字人文,社会学,历史和计算机科学的相关学科之间的更好的访问,为更好地理解传统人文问题提供基础。侧写工作可以通过提供一种非侵入性的方法来检测一个人思想的某些方面,从而帮助医学和心理学从业者。开发的软件(以及计划的开发/分发过程)将有助于提高数字人文奖学金和计算机科学的有效性,特别是通过建立软件审查标准和流程。特别是,通过提供各种技术所涉及的条件和预期错误率的直接证据,所获得的信息将有助于作者归属满足Daubert专家证据标准,允许在正式的法律的环境中使用作者归属。最后,这项研究的资金将有助于支持独特的跨学科迪克讷大学计算数学计划,为技术教育提供更广泛的不寻常和非典型的受众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Juola其他文献

Verifying authorship for forensic purposes: A computational protocol and its validation
  • DOI:
    10.1016/j.forsciint.2021.110824
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Patrick Juola
  • 通讯作者:
    Patrick Juola
Keyboard Behavior Based Authentication for Security
基于键盘行为的安全身份验证
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Juola
  • 通讯作者:
    Patrick Juola
Keyboard-Behavior-Based Authentication
基于键盘行为的身份验证
  • DOI:
    10.1109/mitp.2013.49
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Patrick Juola;John Noecker;Ariel Stolerman;Michael Ryan;Patrick Brennan;R. Greenstadt
  • 通讯作者:
    R. Greenstadt

Patrick Juola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Juola', 18)}}的其他基金

SaTC: CORE: Small: Collaborative: Defending Against Authorship Attribution Attacks
SaTC:核心:小型:协作:防御作者归属攻击
  • 批准号:
    1814602
  • 财政年份:
    2018
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant
CRI: CRD: Collaborative Research: Community Resources for Authorship Attribution Research
CRI:CRD:协作研究:作者归属研究的社区资源
  • 批准号:
    0751087
  • 财政年份:
    2008
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant
SDCI Data New: A Modular Software Framework for Evaluation, Testing, and Cross-Fertilization of Authorship Attribution Techniques
SDCI 数据新功能:用于作者归属技术评估、测试和交叉应用的模块化软件框架
  • 批准号:
    0721667
  • 财政年份:
    2007
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant
Summer Institute in Japan for U.S. Graduate Students in Science and Engineering
美国科学与工程研究生日本暑期学院
  • 批准号:
    9110044
  • 财政年份:
    1991
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant
Development of Physical Education Classes Improvement System and Online Training Platform Based on Visualized Data
基于可视化数据的体育课堂改进系统及在线训练平台开发
  • 批准号:
    23H00958
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of the meteorological model performance by using strongly coupled data assimilation of wind and aerosol
利用风和气溶胶强耦合数据同化改进气象模型性能
  • 批准号:
    23K13173
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Building a data-driven educational improvement platform by supporting hybrid class design
支持混合班级设计,构建数据驱动的教育改进平台
  • 批准号:
    23H00992
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ICBR Capacity: Biological Collections: Infrastructure improvement and data preservation of the Tetrapods Collection at the Ohio State University Museum of Biological Diversity.
ICBR 能力:生物收藏:俄亥俄州立大学生物多样性博物馆四足动物收藏的基础设施改善和数据保存。
  • 批准号:
    2312986
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Continuing Grant
Accurate Analysis of Nanopore Sequence Data to Drive Crop Improvement
准确分析纳米孔序列数据以推动作物改良
  • 批准号:
    2885328
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Studentship
Famli - Capturing the wellbeing improvement data of children and families
Famli - 获取儿童和家庭的福祉改善数据
  • 批准号:
    10084960
  • 财政年份:
    2023
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Collaborative R&D
Smart QI: Developing a scalable platform for integrating data-driven algorithms that drive quality improvement in pediatric sepsis care at health facilities in Uganda
Smart QI:开发一个可扩展的平台,用于集成数据驱动的算法,推动乌干达医疗机构儿科脓毒症护理质量的提高
  • 批准号:
    460680
  • 财政年份:
    2022
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Miscellaneous Programs
Data science and pharmacoepidemiology for outcome improvement in severe mental illness (DS-SMI)
数据科学和药物流行病学改善严重精神疾病的结果(DS-SMI)
  • 批准号:
    MR/V023373/1
  • 财政年份:
    2022
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Fellowship
SBIR Phase I: Efficient Arithmetic on Quasi-Compressed Data for Performance Improvement
SBIR 第一阶段:准压缩数据的高效算法以提高性能
  • 批准号:
    2111696
  • 财政年份:
    2022
  • 资助金额:
    $ 162.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了