SDCI Data Improvement: Improvement and Sustainability of iRODS Data Grid Software for Multi-Disciplinary Community Driven Application

SDCI 数据改进:针对多学科社区驱动应用的 iRODS 数据网格软件的改进和可持续性

基本信息

项目摘要

The integrated Rule Oriented Data System (iRODS) software is used in production systems on an international scale, supporting interdisciplinary research projects in seismology, oceanography, astronomy, plant biology, climate change, cognitive science, social sciences, psycholinguistics, and high-energy physics. The iRODS data grid supports collections at scale, from small 200 Gigabyte social science collections, to multi-petabyte collections of observational data.This will fund the development of the iRODS infrastructure to incorporate new capabilities to meet the requirements by each user community, to support interoperability with domain specific technologies such as support for an extended metadata system, advanced data transport protocols, unification of authentication environments, user-selected access mechanisms, data analytic micro-services, and real-time data streams. This will also fund continued consulting support for installation and customization of the software, incorporation of new features developed by an international group of collaborators, and presentation of tutorials and workshops on applications of iRODS. We will develop rulekits that encapsulate standard policy and procedure sets to simplify use by new communities. We will collaborate with the University of Wisconsin on security appraisals to minimize vulnerabilities, and collaborate with the Renaissance Computing Institute on integration with cloud computing systems. We will explore research initiatives related to database federation and workflow integration to meet specific requirements of the user communities.We will develop the mechanisms (improved user interfaces, documentation, and rulekits) that will enable use of the iRODS data grid at scale with thousands to millions of users. We will support the application of the iRODS infrastructure to NSF research initiatives with the explicit goal of enabling use of shared collections within institutional repositories for education initiatives. Since the policies used within iRODS to control collections can be tuned to meet specific community goals, iRODS can be used to integrate institutional repositories with NSF national research initiatives. iRODS can also link personal laptops into national collaborations, enabling policy-controlled participation by students in research initiatives. Through creation of standard rulekits, we will enable creation of reference collections within research projects, within institutional repositories, within national research projects, and within international collaborations.
集成的面向规则的数据系统(iRODS)软件在国际范围内用于生产系统,支持地震学,海洋学,天文学,植物生物学,气候变化,认知科学,社会科学,心理语言学和高能物理学的跨学科研究项目。iRODS数据网格支持大规模收集,从200兆字节的小型社会科学收集到数PB的观测数据收集。这将资助iRODS基础设施的开发,以纳入新的功能,满足每个用户群体的需求,支持与特定领域技术的互操作性,例如支持扩展元数据系统,高级数据传输协议,统一的认证环境、用户选择的访问机制、数据分析微服务和实时数据流。 这还将资助继续为软件的安装和定制提供咨询支持,纳入国际合作者小组开发的新功能,以及介绍关于iRODS应用的教程和讲习班。我们将开发封装标准策略和过程集的规则包,以简化新社区的使用。我们将与威斯康星州大学合作进行安全评估,以最大限度地减少漏洞,并与文艺复兴计算研究所合作整合云计算系统。我们将探索与数据库联合和工作流程集成相关的研究计划,以满足用户群体的特定需求。我们将开发机制(改进的用户界面、文档和规则包),使iRODS数据网格能够在数千至数百万用户的规模上使用。我们将支持将iRODS基础设施应用于NSF研究计划,其明确目标是使教育计划能够使用机构知识库内的共享馆藏。由于iRODS中用于控制收集的政策可以调整以满足特定的社区目标,因此iRODS可以用于将机构知识库与NSF国家研究计划相结合。iRODS还可以将个人笔记本电脑与国家合作联系起来,使学生能够在政策控制下参与研究活动。通过创建标准规则包,我们将能够在研究项目、机构知识库、国家研究项目和国际合作中创建参考资料集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arcot Rajasekar其他文献

Weak Generalized Closed World Assumption
  • DOI:
    10.1007/bf00248321
  • 发表时间:
    1989-09-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Arcot Rajasekar;Jorge Lobo;Jack Minker
  • 通讯作者:
    Jack Minker
On stratified disjunctive programs
Complexity of computing with extended propositional logic programs

Arcot Rajasekar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arcot Rajasekar', 18)}}的其他基金

CyberTraining: DSE: Cyber Carpentry: Data Life-Cycle Training using the Datanet Federation Consortium Platform
网络培训:DSE:网络木工:使用数据网联盟联盟平台进行数据生命周期培训
  • 批准号:
    1730390
  • 财政年份:
    2017
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
EAGER: DBfN: Data Bridge for Neuroscience: A novel way of discovery for Neuroscience Data
EAGER:DBfN:神经科学数据桥:神经科学数据发现的新方法
  • 批准号:
    1649397
  • 财政年份:
    2016
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
I-Corps: Teams Project: iRODS-to-Market
I-Corps:团队项目:iRODS 上市
  • 批准号:
    1332157
  • 财政年份:
    2013
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: ESCE: DCM: Collaborative Research: DataBridge - A Sociometric System for Long-Tail Science Data Collections
BIGDATA:中型:ESCE:DCM:协作研究:DataBridge - 长尾科学数据收集的社会计量系统
  • 批准号:
    1247652
  • 财政年份:
    2012
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
DataNet Full Proposal: DataNet Federation Consortium
DataNet 完整提案:DataNet 联盟联盟
  • 批准号:
    0940841
  • 财政年份:
    2011
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Cooperative Agreement
Digital Preservation Lifecycle Management: Building A Demonstration Prototype for the Preservation of Large Scale Multimedia Collections
数字保存生命周期管理:构建大规模多媒体馆藏保存的演示原型
  • 批准号:
    0456055
  • 财政年份:
    2005
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
Research In Disjunctive Logic Programming
析取逻辑编程研究
  • 批准号:
    9110721
  • 财政年份:
    1991
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doctoral Dissertation Research Improvement Grant: Biobanking, Epistemic Infrastructure, and the Lifecycle of Genomic Data
博士论文研究改进补助金:生物样本库、认知基础设施和基因组数据的生命周期
  • 批准号:
    2341622
  • 财政年份:
    2024
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
Development of Physical Education Classes Improvement System and Online Training Platform Based on Visualized Data
基于可视化数据的体育课堂改进系统及在线训练平台开发
  • 批准号:
    23H00958
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of the meteorological model performance by using strongly coupled data assimilation of wind and aerosol
利用风和气溶胶强耦合数据同化改进气象模型性能
  • 批准号:
    23K13173
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Building a data-driven educational improvement platform by supporting hybrid class design
支持混合班级设计,构建数据驱动的教育改进平台
  • 批准号:
    23H00992
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ICBR Capacity: Biological Collections: Infrastructure improvement and data preservation of the Tetrapods Collection at the Ohio State University Museum of Biological Diversity.
ICBR 能力:生物收藏:俄亥俄州立大学生物多样性博物馆四足动物收藏的基础设施改善和数据保存。
  • 批准号:
    2312986
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Continuing Grant
Famli - Capturing the wellbeing improvement data of children and families
Famli - 获取儿童和家庭的福祉改善数据
  • 批准号:
    10084960
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Collaborative R&D
Accurate Analysis of Nanopore Sequence Data to Drive Crop Improvement
准确分析纳米孔序列数据以推动作物改良
  • 批准号:
    2885328
  • 财政年份:
    2023
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Studentship
SBIR Phase I: Efficient Arithmetic on Quasi-Compressed Data for Performance Improvement
SBIR 第一阶段:准压缩数据的高效算法以提高性能
  • 批准号:
    2111696
  • 财政年份:
    2022
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Standard Grant
Smart QI: Developing a scalable platform for integrating data-driven algorithms that drive quality improvement in pediatric sepsis care at health facilities in Uganda
Smart QI:开发一个可扩展的平台,用于集成数据驱动的算法,推动乌干达医疗机构儿科脓毒症护理质量的提高
  • 批准号:
    460680
  • 财政年份:
    2022
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Miscellaneous Programs
Data science and pharmacoepidemiology for outcome improvement in severe mental illness (DS-SMI)
数据科学和药物流行病学改善严重精神疾病的结果(DS-SMI)
  • 批准号:
    MR/V023373/1
  • 财政年份:
    2022
  • 资助金额:
    $ 163.58万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了