Collaborative Research: Biomimetic Lubricants: Gels based on Biomolecules and Nanoparticles with Ultralow Coefficients of Friction

合作研究:仿生润滑剂:基于生物分子和纳米粒子的超低摩擦系数凝胶

基本信息

  • 批准号:
    1034175
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Lubricants play an integral role in the operation of several technologies and in biology, ranging from moving parts in machinery to the biolubrication of articular joints. The main purposes of a lubricant are to reduce friction and surface wear. We propose a collaborative project involving 3 faculty members fromTulane University and a faculty member from the University of Maryland, each bearing unique expertise required for the success of the project. The PI (N. Pesika) is a junior faculty in his 2nd year and was a postdoctoral associate in the Interface laboratory at UCSB working under the guidance of Dr. Israelachvili. In recent years, N. Pesika has done theoretical and experimental work to understand the adhesion mechanism of the gecko and has become proficient in tribology and the characterization of lubricants. V. John is a senior faculty member with experience in the field of surface and colloidal science, specifically in the synthesis and modification of colloids. H. Ashbaugh's research focuses on the multiscale simulation and the theory of self assembly processes of molecules including surfactants, polymer melts, and biopolymer gels. S. Raghavan heads the complex fluid and nanomaterials group at the University of Maryland, and is an authority on self-assembling soft materials. We have found that an easily synthesized system of monodisperse hard carbon submicron spherical particles (HCS) has frictional coefficients that start approaching those of synovial fluids. When these observations are coupled with a novel discovery in S. Raghavan's laboratory that a modified biopolymer (chitosan) is able to gel vesicles, we are able to realize a unique gel system containing the carbon microspheres serving as nodes in a network of this biopolymer. This forms the basis of our proposed work to develop novel gel based lubricants containing monodisperse particles or cushioning vesicles. Our hypothesis is that these composite materials will be able to reduce friction and minimize surface wear synergistically through the boundary lubrication of biomolecules/biopolymers and the rolling mechanism (similar to ball bearings) employed by HCS particles. We therefore propose to develop biomimetic lubricants with ultralow coefficients of friction that are robust and easy to synthesize. Several formulations composed of phospholipid based liposomes, biopolymers and carbon microspheres will be systematically explored to optimize the lubrication properties, including a low coefficient of friction and minimal surface wear, through molecular and particulate design.Broader Impacts of research: While several types of lubricants have been formulated water-based lubricants that mimic synovial fluid remain elusive. A biomimetic lubricant exhibiting ultralow coefficient of friction has several applications including potential substitutes for synovial fluid in diseased or damaged articular joints or in applications to microfluidics or microelectromechanical devices. The potential scientific impact is extremely broad, affecting all industries utilizing lubricants.Broader Educational and Outreach efforts: N. Pesika and H. Ashbaugh are committed to improving local K-12 education and have established a service learning course at the New Orleans Charter Science and Mathematics (NOCSM) High School. The demography of the school closely parallels that of the community, with 85% being from households classified as economically disadvantaged, and 86% of the student population belonging to a minority (82% African American). The outreach program was designed to present every day uses of the scientific method through presentation made by Tulane students followed up with experiments to illuminate the nature of the demonstrated phenomenon, like the rheological properties of biopolymers and the operation of heat engines. V. John has been a consistent participant of the LAMP (Louisiana Alliance for Minority Participation in Research) program for the last 8 years supervising one or two students every summer while N. Pesika will begin participation in the LAMP program over the summer. These minority students are typically from the minority institutions in the state (Xavier, Southern, Grambling State) or from non-minority New Orleans institutions including Tulane. We plan to apply for REU supplements which will be leveraged through the LAMP program.
润滑剂在几种技术和生物学的运行中起着不可或缺的作用,从机械中的运动部件到关节关节的生物润滑。润滑剂的主要目的是减少摩擦和表面磨损。我们提出了一个合作项目,涉及3名教职员工大学和马里兰大学的一名教职员工,每个大学都具有该项目成功所需的独特专业知识。 PI(N。Pesika)是第二年的初级教师,并且是UCSB接口实验室的博士后助理,在Israelachvili博士的指导下工作。近年来,N。Pesika进行了理论和实验性工作以了解壁虎的粘附机制,并且已经精通摩擦学和润滑剂的特征。 V. John是一名高级教师,在表面和胶体科学领域,特别是在胶体的合成和修饰方面。 H. Ashbaugh的研究着重于多尺度模拟和分子的自组装过程,包括表面活性剂,聚合物融化和生物聚合物凝胶。 S. Raghavan负责马里兰大学的复杂液体和纳米材料组,并且是自组装软材料的权威。 我们发现,单分散碳亚微米球形颗粒(HCS)的易于合成的系统具有摩擦系数,该系数开始接近滑液的摩擦系数。当这些观察结果与S. raghavan的实验室中的新发现相结合时,改性的生物聚合物(壳聚糖)能够凝胶囊泡时,我们能够实现一个独特的凝胶系统,该系统含有含碳微球在该生物聚合物网络中用作节点的碳微球。这构成了我们提出的工作的基础,以开发含有单分散颗粒或缓冲囊泡的新型凝胶润滑剂。 我们的假设是,这些复合材料将能够通过生物分子/生物聚合物的边界润滑以及HCS颗粒采用的滚动机制(类似于球轴承)来减少摩擦和最小化表面磨损。因此,我们建议开发具有强大且易于合成的超低摩擦系数的仿生润滑剂。将系统探索由磷脂,生物聚合物和碳微球组成的几种制剂,以优化润滑性能,包括低摩擦和最小的表面磨损,通过分子和颗粒设计的最小化表面磨损。表现出超大摩擦系数的仿生润滑剂具有多种应用,包括在患病或受损的关节中的滑液的潜在替代物,或在微能力或微机械设备中应用。潜在的科学影响非常广泛,影响了所有利用润滑剂的行业。Broader教育和外展工作:N。Pesika和H. Ashbaugh致力于改善本地K-12教育,并在新奥尔良宪章科学和数学(NOCSM)高中建立了服务学习课程。学校的人口统计与社区的人口相似,其中85%来自属于经济不利的家庭,占少数族裔的学生人数的86%(82%的非裔美国人)。该外展计划旨在通过Tulane Students进行的演讲来介绍科学方法的每天使用,然后进行实验以阐明所示现象的性质,例如生物聚合物的流变特性和热发动机的运行。 V. John一直是LAMP(路易斯安那州少数群体参与研究的联盟)计划的一贯参与者,每年夏天在一两个学生中进行监督,而N. Pesika将在整个夏季开始参加灯泡计划。这些少数族裔学生通常来自该州的少数族裔机构(Xavier,Southern,Grambling State)或包括Tulane在内的非少数新奥尔良机构。我们计划申请将通过灯泡程序利用的REU补充剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noshir Pesika其他文献

Adhesion and friction of an isolated gecko setal array: The effects of substrates and relative humidity
孤立壁虎组阵列的粘附和摩擦:基质和相对湿度的影响
  • DOI:
    10.1016/j.bsbt.2015.02.002
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dashuai Tao;Jin Wan;Noshir Pesika;Hongbo Zeng;Zheyu Liu;Xiangjun Zhang;Yonggang Meng;Yu Tian
  • 通讯作者:
    Yu Tian

Noshir Pesika的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noshir Pesika', 18)}}的其他基金

RII Track-4: NSF: Self-healing Modular Panels for Space and Lunar Missions
RII Track-4:NSF:用于太空和月球任务的自愈模块化面板
  • 批准号:
    2327424
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
I-Corps: High Lubricity Biomimetic Meniscus
I-Corps:高润滑性仿生半月板
  • 批准号:
    2029961
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Porous Polymeric films with Ultra-low Coefficient of Friction
具有超低摩擦系数的多孔聚合物薄膜
  • 批准号:
    1301286
  • 财政年份:
    2013
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于叶脉/叶序的恶劣工况下仿生管道多场协作抗冲蚀研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于叶脉/叶序的恶劣工况下仿生管道多场协作抗冲蚀研究
  • 批准号:
    52105294
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
多仿生机器海豚协同目标感知与追踪控制研究
  • 批准号:
    61903007
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
旋翼机器人仿生物灵巧型协作中的轨迹动态优化与抗扰追踪技术研究
  • 批准号:
    51605282
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向人机共融协作的柔性双臂机器人安全作业机理研究
  • 批准号:
    51575157
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
  • 批准号:
    2323500
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Predicting the Mechanical Properties of Biomimetic Apatite Crystals Due to Co and Cr Ion Substitutions
合作研究:预测因 Co 和 Cr 离子取代而产生的仿生磷灰石晶体的机械性能
  • 批准号:
    2323499
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and Computational Examination of Biomimetic Peptides Acting as Anti-freeze Molecules
合作研究:仿生肽作为抗冻分子的实验和计算检验
  • 批准号:
    2203527
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了