Mathematical Proof and Proving (MPP) - Design and Implementation of a Special Undergraduate Course
数学证明与证明(MPP)——本科特色课程的设计与实现
基本信息
- 批准号:1044809
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project stems from two common assumptions: 1) mathematical proof and proving are at the heart of mathematics; and 2) the notion of formal proof and the activity of mathematically proving are dauntingly difficult even for most good undergraduate students. It follows that there is a need for undergraduate courses that focus on mathematical proofs in ways that attend to students' difficulties. The project addresses this need.Included in the project is a proof based freshman level course. Course material includes approximately 50 carefully constructed case-problems that create the need to prove in an investigative and engaging way. For each of five central methods of proof there are 6-10 problems that can be proved by this method. For each method, the problems vary in terms of the mathematical topic. A particular problem may serve to illustrate more than one type of proof. This is a collaboration between mathematics educators and mathematicians at NYU. The mathematics educators bring their expertise on effective teaching and learning and knowledge of the research literature on teaching proofs, while the mathematicians bring their expertise in the discipline of mathematics and can ensure that the course meets the requirements of undergraduate majors in mathematics. This unique collaboration between mathematicians and mathematics educators strengthens the quality and impact of the course. Professional development resources and activities are developed and implemented. The faculty development resources allow future courses to be taught by a single faculty member who is either a mathematician or a mathematics educator.
这个项目源于两个常见的假设:1)数学证明和证明是数学的核心;2)形式证明的概念和数学证明的活动即使对大多数优秀的本科生来说也是令人生畏的困难。由此可见,有必要开设注重数学证明的本科课程,以解决学生的困难。该项目解决了这一需求。包括在该项目是一个基于证明的新生水平的课程。课程材料包括大约50个精心构建的案例问题,这些问题需要以调查和参与的方式进行证明。对于五种中心证明方法中的每一种,都有6-10个问题可以用这种方法证明。对于每种方法,问题在数学主题方面有所不同。一个特定的问题可以用来说明不止一种类型的证明。这是纽约大学数学教育家和数学家之间的合作。数学教育工作者带来了他们在有效教与学方面的专业知识和对教学证明研究文献的了解,而数学家则带来了他们在数学学科方面的专业知识,可以确保课程满足数学本科专业的要求。数学家和数学教育者之间的这种独特合作加强了课程的质量和影响。开发和实施专业发展资源和活动。教师发展资源允许未来的课程由一名数学家或数学教育家教授。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Orit Zaslavsky其他文献
Being sloppy about slope: The effect of changing the scale
- DOI:
10.1023/a:1016093305002 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:1.900
- 作者:
Orit Zaslavsky;Hagit Sela;Uri Leron - 通讯作者:
Uri Leron
The nature of students’ productive and non-productive example-use for proving
- DOI:
10.1016/j.jmathb.2017.09.002 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Inbar Aricha-Metzer;Orit Zaslavsky - 通讯作者:
Orit Zaslavsky
Learning through teaching: The case of symmetry
- DOI:
10.1007/bf03217072 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Roza Leikin;Abraham Berman;Orit Zaslavsky - 通讯作者:
Orit Zaslavsky
The challenge of listening
- DOI:
10.1007/s10857-010-9146-8 - 发表时间:
2010-02-01 - 期刊:
- 影响因子:1.800
- 作者:
Orit Zaslavsky - 通讯作者:
Orit Zaslavsky
The complex interplay between examples and proving: Where are we and where should we head?
- DOI:
10.1016/j.jmathb.2018.10.001 - 发表时间:
2019-03-01 - 期刊:
- 影响因子:
- 作者:
Orit Zaslavsky;Eric Knuth - 通讯作者:
Eric Knuth
Orit Zaslavsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Proof of alcoholic beverage consumption based on the quantitation of novel biomarkers
基于新型生物标志物定量的酒精饮料消费证明
- 批准号:
24K13564 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
- 批准号:
IE230100464 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Early Career Industry Fellowships
Repurposing Sodium Cromoglycate For Lymphangioleiomyomatosis (LAM): An Open Label, Proof Of Concept And Feasibility Study
重新利用色甘酸钠治疗淋巴管平滑肌瘤病 (LAM):开放标签、概念验证和可行性研究
- 批准号:
MR/Y008618/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
EAGER: Proof-Carrying Code Completions
EAGER:携带证明的代码完成
- 批准号:
2403762 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Algorithms for Future-Proof Networks
面向未来的网络算法
- 批准号:
DP240101353 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
SBIR Phase I: Next-Generation Maximal Extractable Value (MEV) Proof Distributed Ledger Architecture
SBIR 第一阶段:下一代最大可提取价值(MEV)证明分布式账本架构
- 批准号:
2213017 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Boosting C4 photosynthesis to climate proof crop yields
促进 C4 光合作用以适应气候变化的作物产量
- 批准号:
DP230100175 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects