CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
基本信息
- 批准号:2238079
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite their impressive performance in a variety of challenging real-world tasks, concerns remain about the trustworthiness of state-of-the-art deep neural networks (DNNs). The development of DNNs suitable for real-world deployment requires formally proving that they satisfy a large number of trustworthy specifications (e.g., robustness, safety, fairness). If they do not, then the DNNs are iteratively repaired or re-trained until they are formally proven to be trustworthy. Overall, trustworthy DNN development requires calling a DNN verifier a large number of times for different specifications and DNNs. Each call to a DNN verifier is computationally demanding and while there has been plenty of work on improving the precision and scalability of state-of-the-art verifiers for verifying individual DNNs and specifications in recent years, the existing verifiers remain fundamentally non-scalable and unsustainable for trustworthy development of DNNs. This is because the expensive verifier needs to be run from scratch for every new pair of specifications and DNNs. The project novelties are in overcoming this barrier by the design of new concepts, theories, algorithms, and representations to enable incremental verification of DNNs. The project's impacts are making DNN verification more scalable, sustainable, and accessible. This allows scalable development of trustworthy DNNs thus ensuring that this technology realizes its true potential in transforming the society and economy. The project introduces the new concepts of proof sharing and proof transfer for enabling incremental DNN verification. Proof sharing makes the verification of multiple specifications on the same DNN more scalable and precise by computing a common proof for multiple specifications. Proof transfer boosts the verification across multiple networks by transferring the proofs generated on one network for multiple similar networks. Precision, speed, and memory gains from incremental verification are further improved by designing new mechanisms for DNN training and repair. The frameworks and tools for incremental DNN verification designed in this project are general, and compatible with diverse methods for DNN training, repair, and verification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管它们在各种具有挑战性的现实任务中表现令人印象深刻,但人们仍然担心最先进的深度神经网络(DNN)的可信度。开发适合于现实世界部署的DNN需要正式证明它们满足大量值得信赖的规范(例如,鲁棒性、安全性、公平性)。如果它们没有,那么DNN会被反复修复或重新训练,直到它们被正式证明是值得信赖的。总的来说,可信的DNN开发需要针对不同的规范和DNN多次调用DNN验证器。对DNN验证器的每次调用都需要计算,虽然近年来在提高用于验证单个DNN和规范的最先进验证器的精度和可扩展性方面做了大量工作,但现有的验证器对于DNN的可靠开发来说仍然是不可扩展和不可持续的。这是因为对于每一对新的规范和DNN,都需要从头开始运行昂贵的验证器。该项目的创新之处在于通过设计新的概念、理论、算法和表示来克服这一障碍,以实现DNN的增量验证。该项目的影响使DNN验证更具可扩展性,可持续性和可访问性。这使得可信赖的DNN的可扩展开发成为可能,从而确保该技术实现其在改变社会和经济方面的真正潜力。 该项目引入了证据共享和证据传输的新概念,以实现增量DNN验证。证明共享通过计算多个规范的公共证明,使同一DNN上的多个规范的验证更具可扩展性和精确性。证明传输通过将在一个网络上生成的证明传输给多个类似的网络来增强跨多个网络的验证。通过设计DNN训练和修复的新机制,增量验证的精度、速度和内存增益得到了进一步提高。该项目中设计的增量DNN验证框架和工具是通用的,并与DNN培训,修复和验证的各种方法兼容。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gagandeep Singh其他文献
Emerging Aspergillus lentulus infections in India.
印度新出现的迟缓曲霉菌感染。
- DOI:
10.1016/j.ijmmb.2021.10.011 - 发表时间:
2021 - 期刊:
- 影响因子:1.6
- 作者:
Jaweed Ahmed;Gagandeep Singh;I. Xess;M. Pandey;A. Mohan;J. Sachdev;P. Mani;B. Rana - 通讯作者:
B. Rana
Chest Radiograph Disentanglement for COVID-19 Outcome Prediction
胸部 X 光片解开以预测 COVID-19 的结果
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Lei Zhou;Joseph Bae;Huidong Liu;Gagandeep Singh;Jeremy Green;D. Samaras;P. Prasanna - 通讯作者:
P. Prasanna
Cache Controller for 4-way Set-Associative Cache Memory
用于 4 路组关联高速缓存存储器的高速缓存控制器
- DOI:
10.5120/ijca2015906787 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Praveena Chauan;Gagandeep Singh;Gurmohan Singh - 通讯作者:
Gurmohan Singh
Zika virus an emergent mosquito borne infection: Review of literature.
寨卡病毒是一种新出现的蚊媒感染:文献综述。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Neki;N. Joshi;G. Joshi;Gagandeep Singh;Khushpreet Singh;G. Shergill;Rubal Sharma - 通讯作者:
Rubal Sharma
Unexplained neurological events during bathing in young people: Possible association with the use of gas geysers
年轻人洗澡时出现无法解释的神经系统事件:可能与使用气体间歇泉有关
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:1.7
- 作者:
P. Singh;A. Lamba;R. Bansal;Gagandeep Singh - 通讯作者:
Gagandeep Singh
Gagandeep Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Proof of alcoholic beverage consumption based on the quantitation of novel biomarkers
基于新型生物标志物定量的酒精饮料消费证明
- 批准号:
24K13564 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A genomic toolkit to future-proof the seaweed industry
面向未来的海藻行业的基因组工具包
- 批准号:
IE230100464 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Early Career Industry Fellowships
Repurposing Sodium Cromoglycate For Lymphangioleiomyomatosis (LAM): An Open Label, Proof Of Concept And Feasibility Study
重新利用色甘酸钠治疗淋巴管平滑肌瘤病 (LAM):开放标签、概念验证和可行性研究
- 批准号:
MR/Y008618/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
EAGER: Proof-Carrying Code Completions
EAGER:携带证明的代码完成
- 批准号:
2403762 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Algorithms for Future-Proof Networks
面向未来的网络算法
- 批准号:
DP240101353 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324936 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
- 批准号:
2324937 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Proof of concept: Development, testing and implementation of a collaborative filtering recommendation algorithm to drive engagement with art and culture events
概念验证:开发、测试和实施协作过滤推荐算法,以推动艺术和文化活动的参与
- 批准号:
10063112 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Boosting C4 photosynthesis to climate proof crop yields
促进 C4 光合作用以适应气候变化的作物产量
- 批准号:
DP230100175 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects