SBIR Phase I: Adaptive Job Scheduling Software for Cutting Room Operations
SBIR 第一阶段:用于裁剪室操作的自适应作业调度软件
基本信息
- 批准号:1046683
- 负责人:
- 金额:$ 14.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Small Business Innovation Research (SBIR) Phase I project aims to create adaptive job scheduling software for cutting room operations. Cutting rooms are used primarily for the production of sewn goods (apparel, furniture, luggage, etc) as well as many other industries. Today, cutting room managers rely on personal experience, spreadsheets, e-mails, faxes, whiteboards and often outdated rules-of-thumb to schedule material, labor and equipment for their operations. There is currently no software that provides real-time decision support to assist them in executing cutting operations with optimal resource usage. This project is configurable software that can model and optimize, in real-time, the complex variables of cutting operations across many industry segments. The software will collect live manufacturing data and perform calculations to produce job schedules that optimize equipment, labor and material usage in cutting rooms. A further innovation is the addition of adaptive control. This will use actual operational performance to provide feedback in order to fine-tune the scheduling calculations. The use of adaptive job scheduling software is expected to result in a 20% increase in cutting productivity, as measured by lower labor costs, improved machine utilization and shorter lead times. The commercial potential of this project is to make cutting room operations more productive in order to retain U.S. manufacturing jobs. The U.S. sewn goods industries have been devastated by intense international competition that has made most domestic production non-competitive against off-shore labor rates. As a result, new innovations in sewn goods technology have focused on software that enabled manufacturers to outsource production low-cost countries instead of improvements for domestic manufacturing and protection of U.S. jobs. However, recent developments in highly engineered materials, such as body armor, require skilled labor to ensure quality standards of the finished product. These skill sets are more reliably found in domestic labor pools than in low-cost, untrained, foreign language, off-shore labor pools. Furthermore, domestic cutting operations are more likely than off-shore operations to use automated cut room equipment to increase productivity. This automated equipment can be made more efficient with effective job scheduling software. A 20% gain in productivity would help domestic manufacturers offset labor costs to maintain global competitiveness and retain an estimated 75,000 US manufacturing jobs.
这个小型企业创新研究(SBIR)第一阶段项目旨在为裁剪车间操作创建自适应作业调度软件。裁剪室主要用于缝纫产品(服装、家具、箱包等)的生产以及许多其他行业。今天,剪辑室经理依靠个人经验、电子表格、电子邮件、传真、白板和通常过时的经验法则来为他们的运营安排材料、劳动力和设备。目前还没有提供实时决策支持的软件来帮助他们以最佳的资源使用来执行切割作业。该项目是一个可配置的软件,可以实时模拟和优化多个细分行业的切割操作的复杂变量。该软件将收集实时制造数据并执行计算,以生成作业计划,以优化裁剪车间的设备、劳动力和材料使用。另一项创新是增加了自适应控制。这将使用实际运营业绩来提供反馈,以便微调调度计算。通过降低劳动力成本、提高机器利用率和缩短交货期,自适应作业调度软件的使用预计将使切割生产率提高20%。该项目的商业潜力是使裁剪车间的运营更具生产力,以保留美国制造业的就业机会。激烈的国际竞争让美国的缝纫品行业遭受重创,这使得国内生产的大部分产品相对于离岸劳动力价格缺乏竞争力。因此,缝纫品技术的新创新专注于使制造商能够将生产外包给低成本国家的软件,而不是改善国内制造和保护美国就业机会。然而,防弹衣等高度工程化材料的最新发展需要熟练的劳动力来确保成品的质量标准。这些技能在国内的劳动力池中比在低成本、未经培训的外语和离岸劳动力池中更可靠。此外,国内的切割作业比离岸作业更有可能使用自动化切割室设备来提高生产率。这种自动化设备可以通过有效的作业调度软件来提高效率。生产率提高20%将有助于国内制造商抵消劳动力成本,以保持全球竞争力,并保留约7.5万个美国制造业工作岗位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Holly Beum其他文献
Holly Beum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Improving indoor agriculture grow light efficiency with adaptive light shaping
SBIR 第一阶段:通过自适应光整形提高室内农业种植光效率
- 批准号:
2304339 - 财政年份:2023
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase I: Adaptive Dialog Systems As Second Language Learning Partners
SBIR 第一阶段:自适应对话系统作为第二语言学习伙伴
- 批准号:
2213202 - 财政年份:2023
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase II: Adaptive Experiential Learning Platform to Close Learning Gaps in Secondary Algebra
SBIR 第二阶段:缩小中学代数学习差距的自适应体验式学习平台
- 批准号:
2126780 - 财政年份:2021
- 资助金额:
$ 14.63万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Information fusion-driven adaptive corridor-wide traffic signal re-timing
SBIR第二阶段:信息融合驱动的自适应走廊交通信号重新定时
- 批准号:
2052257 - 财政年份:2021
- 资助金额:
$ 14.63万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Plant Photomorphogenesis using Adaptive Multispectral LED Arrays in a Rotary Aeroponic Cultivation Chamber (RACC)
SBIR 第一阶段:在旋转气培培养室 (RACC) 中使用自适应多光谱 LED 阵列进行植物光形态发生
- 批准号:
2025920 - 财政年份:2020
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase II: An adaptive machine learning-based platform to improve surgical quality and patient outcomes
SBIR II 期:基于自适应机器学习的平台,可提高手术质量和患者治疗效果
- 批准号:
1926924 - 财政年份:2019
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase I: Information fusion-driven adaptive corridor-wide traffic signal re-timing
SBIR第一阶段:信息融合驱动的自适应走廊交通信号重新定时
- 批准号:
1914219 - 财政年份:2019
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase II: Cloud-based Automated Dose Accumulation for Online Adaptive Radiotherapy
SBIR 第二阶段:基于云的在线自适应放射治疗自动剂量累积
- 批准号:
1853110 - 财政年份:2019
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase I: Cloud-based Automated Dose Accumulation for Online Adaptive Radiotherapy
SBIR 第一阶段:基于云的在线自适应放射治疗自动剂量累积
- 批准号:
1746778 - 财政年份:2018
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant
SBIR Phase II: Adaptive Charging Network for EV and Energy Services
SBIR 第二阶段:电动汽车和能源服务的自适应充电网络
- 批准号:
1831191 - 财政年份:2018
- 资助金额:
$ 14.63万 - 项目类别:
Standard Grant