SBIR Phase II: An adaptive machine learning-based platform to improve surgical quality and patient outcomes
SBIR II 期:基于自适应机器学习的平台,可提高手术质量和患者治疗效果
基本信息
- 批准号:1926924
- 负责人:
- 金额:$ 69.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will be to help usher in personalized and tailored surgical care within a shifting healthcare context toward value-based care. Hospitals and surgeons are seeking solutions that will enable them to target, as opposed to generalizing, improvements in surgical quality for enhanced patient outcomes and effective use of resources. By proactively identifying surgical risks and matching patients to interventions most appropriate for these risk strata, the proposed technology is designed to support hospitals in meeting their value-based care objectives. The larger vision is to apply this paradigm in all of medicine by leveraging Artificial Intelligence and Machine Learning for prediction, proactive intervention, and outcomes tracking in a closed feedback loop. Demonstrating this in a high-cost, high-risk specialty like surgery provides a path for expanding the technology into other medical specialties and serving a greater domestic and international market. Ultimately, the lessons learned from the wide-spread use of this technology will allow society to derive key kernels of knowledge in applied data science, preventative medicine, and technical scalability of hospital enterprise solutions. This project is an interdisciplinary representation of crucial activities needed to drive the tipping point of medical technology. This Small Business Innovation Research (SBIR) Phase II project builds upon the results of Phase I, which included predictive engine development, scalable data processing pipeline development, and hospital stakeholder engagement activities. Phase II efforts focus on further developing the technology to facilitate its commercial use and integration in clinical settings. Key objectives for the Phase II project are as follows: (1) development of an Application Programming Interface (API) to deliver tailored machine learning models to broad users across varying needs, (2) expansion of a clinical intervention library supported by clinical evidence across multiple surgical specialties, and (3) development of an outcomes dashboard to display postoperative patient outcomes from automated extraction of electronic health records. The result of this project will be a closed-loop clinical and technical infrastructure that is agile to the needs of a diverse range of surgical customers to enable quality improvement across an entire surgical ecosystem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)第二阶段项目的更广泛的影响/商业潜力将是在医疗保健环境向基于价值的医疗转变的过程中,帮助引入个性化和量身定制的手术护理。医院和外科医生正在寻求解决办法,使他们能够有针对性地(而不是泛泛地)改进手术质量,以提高患者的治疗效果和有效利用资源。通过主动识别手术风险并为患者匹配最适合这些风险层的干预措施,拟议的技术旨在支持医院实现其基于价值的护理目标。更大的愿景是通过利用人工智能和机器学习进行预测、主动干预和封闭反馈回路中的结果跟踪,将这一范式应用于所有医学领域。在外科等高成本、高风险的专业中证明这一点,为将该技术扩展到其他医学专业并服务于更大的国内和国际市场提供了一条途径。最终,从该技术的广泛使用中吸取的经验教训将使社会能够获得应用数据科学、预防医学和医院企业解决方案的技术可扩展性方面的关键知识核心。该项目是推动医疗技术临界点所需的关键活动的跨学科代表。这个小企业创新研究(SBIR)第二阶段项目建立在第一阶段的成果之上,其中包括预测引擎开发、可扩展数据处理管道开发和医院利益相关者参与活动。第二阶段的工作重点是进一步开发该技术,以促进其商业应用和临床环境的整合。二期项目的主要目标如下:(1)开发应用程序编程接口(API),为满足不同需求的广大用户提供量身定制的机器学习模型;(2)扩展由多个外科专科临床证据支持的临床干预库;(3)开发结果仪表板,通过自动提取电子健康记录显示术后患者结果。该项目的结果将是一个闭环的临床和技术基础设施,能够灵活地满足各种手术客户的需求,从而提高整个手术生态系统的质量。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bora Chang其他文献
Deep Learning-Based Risk Model for Best Management of Closed Groin Incisions After Vascular Surgery.
基于深度学习的风险模型,用于血管手术后腹股沟闭合切口的最佳管理。
- DOI:
10.1016/j.jss.2020.02.012 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bora Chang;Zhifei Sun;P. Peiris;Erich Huang;E. Benrashid;E. Dillavou - 通讯作者:
E. Dillavou
A Risk-Prediction Platform for Acute Kidney Injury and 30-Day Readmission After Colorectal Surgery.
急性肾损伤和结直肠手术后 30 天再入院的风险预测平台。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
J. Nellis;Zhifei Sun;Bora Chang;G. Della Porta;C. Mantyh - 通讯作者:
C. Mantyh
Bora Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bora Chang', 18)}}的其他基金
STTR Phase I: Development of a Machine Learning Platform to Predict Surgical Complications
STTR 第一阶段:开发机器学习平台来预测手术并发症
- 批准号:
1721737 - 财政年份:2017
- 资助金额:
$ 69.39万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
- 批准号:
2335175 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
- 批准号:
2335464 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
- 批准号:
2331724 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: A mesh-free, sling-free, minimally invasive treatment for stress urinary incontinence in women
SBIR II 期:无网、无吊带的微创治疗女性压力性尿失禁
- 批准号:
2233106 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Zero Trust Solution for Precision Medicine and Precision Health Data Exchanges
SBIR 第二阶段:精准医疗和精准健康数据交换的零信任解决方案
- 批准号:
2226026 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Computer-based co-reading for students with reading disabilities
SBIR 第二阶段:为有阅读障碍的学生提供基于计算机的共同阅读
- 批准号:
2321439 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
- 批准号:
2314685 - 财政年份:2024
- 资助金额:
$ 69.39万 - 项目类别:
Cooperative Agreement