EAGER: Optimization in Wireless Mobile and Sensor Networks: A Novel Paradigm Based on Differential Evolution

EAGER:无线移动和传感器网络的优化:基于差分进化的新范式

基本信息

  • 批准号:
    1049427
  • 负责人:
  • 金额:
    $ 12.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

This EAGER proposal seeks to develop new, improved approaches, based on single- and multi-objective differential evolution, to the following important problems:(i) QoS-based multicast routing in mobile networks; (ii) Energy-efficient routing in hierarchical (two-tiered) wireless sensor networks; (iii) Stability-aware clustering in mobile ad hoc networks with special consideration of group mobility; and (iv) Cross-layer optimization in wireless sensor networks by joint routing and link scheduling in the presence of energy constraints, link interference and noise.The goal is to achieve higher energy saving, better network performance and extended network lifetimes.The novelty of this proposal is that it brings the power of differential evolution, a cutting-edge strategy in present-day computational intelligence research, to a group of outstanding, NP-hard problems in computer networks. It presents novel schemes for encoding of trial solutions and also for designing the differential operator for these problems. This research cuts across conventional subject lines ? it embodies an interdisciplinary and transformative application of ideas from electrical engineering, computer communications, computational intelligence, and statistical machine learning. This has the potential to open up a radically new direction in networking research.The broader impact of this research is far-reaching in this era of ubiquitous and pervasive computing. The efficiency, flexibility, and controllability provided in the proposed methods can be used to save costs and improve the quality of the final products in the industry. The proposal also includes well-thought out plans for integrating research and education. The PI will use this project to involve high-school students, women, and undergraduate/graduate students in computer science research.
该EAGER建议寻求开发新的、改进的方法,基于单目标和多目标差分进化,以解决以下重要问题:(i)移动的网络中基于QoS的多播路由;(ii)分层网络中的能量有效路由;(iii)分层网络中基于QoS的多播路由。(iii)移动的ad hoc网络中的稳定性感知分簇,特别考虑组移动性;以及(iv)在存在能量约束、链路干扰和噪声的情况下,通过联合路由和链路调度来实现无线传感器网络的跨层优化,目标是实现更高的能量节省,更好的网络性能和更长的网络寿命。该提案的新奇在于,它带来了差分进化的力量,差分进化是当今计算智能研究的前沿策略,一组突出的,NP-难的问题在计算机网络。它提出了新的方案,编码的审判解决方案,并为这些问题设计的微分算子。这项研究跨越了传统的主题?它体现了电气工程,计算机通信,计算智能和统计机器学习的跨学科和变革性应用。这有可能为网络研究开辟一个全新的方向,在这个无处不在和普及计算的时代,这一研究的广泛影响是深远的。所提出的方法提供的效率、灵活性和可控性可用于节省成本和提高工业中最终产品的质量。该提案还包括经过深思熟虑的整合研究和教育的计划。PI将利用这个项目让高中生、妇女和本科生/研究生参与计算机科学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uday Chakraborty其他文献

Uday Chakraborty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uday Chakraborty', 18)}}的其他基金

RI: Small: Model-Directed Hybridization: Principled Design of Hybrids of Model Building, Metaheuristics and More Traditional Optimization Techniques
RI:小型:模型导向的混合:模型构建、元启发式和更传统的优化技术混合的原理设计
  • 批准号:
    1115352
  • 财政年份:
    2011
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312836
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Efficient Design Method of Wireless Power Transfer System through Simultaneous Optimization of Wireless Coil and Circuit Systems
通过同时优化无线线圈和电路系统的无线功率传输系统的高效设计方法
  • 批准号:
    23K13314
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312833
  • 财政年份:
    2023
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Design and Optimization of Sixth Generation (6G) Wireless Networks
第六代 (6G) 无线网络的设计和优化
  • 批准号:
    RGPIN-2022-03125
  • 财政年份:
    2022
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated transmission and resource optimization for massive content distribution in future wireless networks
未来无线网络中海量内容分发的综合传输和资源优化
  • 批准号:
    RGPIN-2019-05715
  • 财政年份:
    2022
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Discovery Grants Program - Individual
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
  • 批准号:
    2218845
  • 财政年份:
    2022
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Standard Grant
Design, Analysis, and Optimization of Energy-Efficient and Secure Next-Generation Wireless Systems and Beyond.
节能且安全的下一代无线系统及其他系统的设计、分析和优化。
  • 批准号:
    RGPIN-2019-04626
  • 财政年份:
    2022
  • 资助金额:
    $ 12.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了