Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
基本信息
- 批准号:2312834
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Next-generation (NextG) wireless networks are anticipated to revolutionize various applications, such as interactive real-time applications like Augmented Reality (AR), while meeting the high Quality-of-Experience (QoE) requirements expected by users. To achieve these goals, NextG networks are undergoing a transformation toward a white-box architecture, characterized by openness, intelligence, and a focus on user needs. Therefore, it is both timely and important to address autonomous resource management within the NextG paradigm. This project aims to facilitate the transition from traditional black-box network designs to a white-box network architecture, which will significantly reduce costs and enhance QoE performance at its core. The findings of this project will be integrated into the curricula of all participating institutions. Furthermore, this project is committed to promoting the engagement of women and underrepresented minority (URM) students through research opportunities and outreach activities at their respective institutions. Mechanisms will be established to foster leadership and participation from URM groups in an annual high-profile research workshop held at OSU.O-RAN is an operator-driven alliance dedicated to the advancement of radio access networks (RAN) toward an open architecture. This research focuses on harnessing the advanced capabilities of O-RAN, with a specific emphasis on edge-assisted low-latency AR as a key use case, to address autonomous resource management in the NextG paradigm. The research employs a data-driven approach across multiple time scales, using Bayesian optimization (BO) as a sample-efficient online learning and black-box optimization tool. The research develops versatile techniques and building blocks to optimize the QoE performance, structured around three interconnected thrusts: (i) developing a provably efficient multi-time-scale data-driven BO framework integrated with O-RAN, (ii) achieving collaborative BO for multi-RAN learning and optimization, and (iii) applying the developed BO frameworks to edge-assisted low-latency AR applications. The research establishes the analytical foundations and algorithmic frameworks that will be integrated with open-source full-stack O-RAN implementations. The evaluation process involves simulations based on 3GPP standards in ns-3, as well as collaborations with industry partners including AT&T, Qualcomm, and Nokia Bell Labs. Real- world trace data and production-grade O-RAN platforms will be leveraged for evaluation purposes. The outcomes of this research not only contribute to advancing knowledge in machine-learning-enabled NextG systems design but also address critical needs within the broader machine learning and networking research communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代(NextG)无线网络预计将给各种应用带来革命性的变化,例如增强现实(AR)等交互式实时应用,同时满足用户期望的高体验质量(QOE)要求。为了实现这些目标,NextG网络正在向以开放、智能和关注用户需求为特征的白盒架构转型。因此,在下一代范式中解决自主资源管理问题既及时又重要。该项目旨在促进从传统的黑盒网络设计向白盒网络架构的过渡,这将显著降低成本,并从核心上提升QOE性能。该项目的调查结果将纳入所有参与机构的课程。此外,该项目致力于通过各自机构的研究机会和外联活动,促进妇女和代表不足的少数群体学生的参与。将建立机制,以培养URM团体在OSU举行的年度高调研究研讨会的领导力和参与。O-RAN是一个运营商驱动的联盟,致力于推动无线接入网络(RAN)向开放架构发展。这项研究的重点是利用O-RAN的高级能力,特别强调边缘辅助的低延迟AR作为关键用例,以解决NextG范式中的自主资源管理。这项研究采用了跨越多个时间尺度的数据驱动方法,使用贝叶斯优化(BO)作为样本高效的在线学习和黑箱优化工具。这项研究开发了多种技术和构建块来优化QOE性能,围绕三个相互关联的推动:(I)开发一个与O-RAN集成的可证明有效的多时间尺度数据驱动的BO框架,(Ii)实现用于多RAN学习和优化的协作式BO,以及(Iii)将所开发的BO框架应用于边缘辅助的低延迟AR应用。这项研究建立了将与开源全栈O-RAN实现集成的分析基础和算法框架。评估过程包括在ns-3中基于3GPP标准的模拟,以及与行业合作伙伴的合作,包括AT&;T、高通和诺基亚贝尔实验室。将利用真实世界的跟踪数据和生产级O-RAN平台进行评估。这项研究的结果不仅有助于提高支持机器学习的NextG系统设计方面的知识,而且还满足了更广泛的机器学习和网络研究社区的关键需求。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charlie Hu其他文献
A Data Reorganization Technique for Improving Data Locality ofIrregular Applications in Software Distributed Shared MemoryY
软件分布式共享内存中提高不规则应用数据局部性的数据重组技术
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Charlie Hu - 通讯作者:
Charlie Hu
A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory
软件共享内存中无家可归者和基于家庭的延迟释放一致性协议的性能比较
- DOI:
10.1109/hpca.1999.744380 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
A. Cox;E. D. Lara;Charlie Hu;W. Zwaenepoel - 通讯作者:
W. Zwaenepoel
OpenMP on Networks of Workstations
工作站网络上的 OpenMP
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Honghui Lu;Charlie Hu;W. Zwaenepoel - 通讯作者:
W. Zwaenepoel
On the efficacy of fine-grained traffic splitting protocols in data center networks
数据中心网络中细粒度流量分流协议的功效
- DOI:
10.1145/2254756.2254818 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Dixit;P. Prakash;R. Kompella;Charlie Hu - 通讯作者:
Charlie Hu
Charlie Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charlie Hu', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225950 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
- 批准号:
2211459 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CNS Core: Small: A Split Software Architecture for Enabling High-Quality Mixed Reality on Commodity Mobile Devices
CNS 核心:小型:用于在商用移动设备上实现高质量混合现实的分离式软件架构
- 批准号:
2112778 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CNS Core: Small: Integrating Real-Time Learning and Control for Large and Dynamic Networked Computer Systems
CNS 核心:小型:集成大型动态网络计算机系统的实时学习和控制
- 批准号:
2113893 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
- 批准号:
1719369 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CSR: Small: Extending Smartphone Battery Life via Prescriptive Energy Profiling
CSR:小:通过规范的能量分析延长智能手机电池寿命
- 批准号:
1718854 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: Enabling Techologies for Energy-Centric Mobile App Design to Extend Mobile Device Battery Life
SBIR 第一阶段:以能源为中心的移动应用程序设计支持技术,以延长移动设备的电池寿命
- 批准号:
1549214 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: Detecting and Mitigating Smartphone Energy Bugs using Compiler and Runtime Analysis
SHF:小型:使用编译器和运行时分析检测和缓解智能手机能源错误
- 批准号:
1320764 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NetSE: Medium: Collaborative Research: Auditing Internet Content for Credibility, Fairness, and Privacy
NetSE:媒介:协作研究:审核互联网内容的可信度、公平性和隐私
- 批准号:
1065456 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NeTS-NOSS: AIDA: Autonomous Information Dissemination in RAndomly Deployed Sensor Networks
NeTS-NOSS:AIDA:随机部署的传感器网络中的自主信息传播
- 批准号:
0721873 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
能-碳-算耦合下综合能源微网的自治-协同-共享运行方法研究
- 批准号:2025JJ60372
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能网联新能源汽车与交通能源微网的协同优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多能互补型微网中储能-新能源协同优化配置研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
构网型光储并网系统故障穿越及控保协同策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
数据驱动的源网荷储系统确定性通信与协同调度研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向多重不确定性条件的交通-能源网协同运行优化方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
碳约束下“车-桩-网-环境”协同的城市物流共同配送网络优化研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于氟碳仿生超声爆破剂诱导钙网蛋白膜转位协同机械破坏效应形成高活性原位疫苗的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向通用人工智能的大规模算网一体化
自适应协同关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
计及多源不确定性的电动汽车与智能配网协同运行优化及激励机制
研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant